
Fe

WBEM Based Management in Linux

A Dell Technical White Paper

February 2011

Praveen Kumar Paladugu (praveen_paladugu@dell.com)
Dell Linux Engineering Team

WBEM Based Management in Linux

 Page ii

THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL
ERRORS AND TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS OR
IMPLIED WARRANTIES OF ANY KIND.

© 2010 Dell Inc. All rights reserved. Reproduction of this material in any manner whatsoever without
the express written permission of Dell Inc. is strictly forbidden. For more information, contact Dell.

Dell, the DELL logo, and the DELL badge, PowerConnect, and PowerVault are trademarks of Dell Inc.
Symantec and the SYMANTEC logo are trademarks or registered trademarks of Symantec Corporation or
its affiliates in the US and other countries. Microsoft, Windows, Windows Server, and Active Directory
are either trademarks or registered trademarks of Microsoft Corporation in the United States and/or
other countries. Other trademarks and trade names may be used in this document to refer to either the
entities claiming the marks and names or their products. Dell Inc. disclaims any proprietary interest in
trademarks and trade names other than its own.

March 2010

WBEM Based Management in Linux

 Page 1

Contents
Introduction ... 2

Common Information Model (CIM) ... 2

SFCB CIMOM .. 4

CIMOM’s other interfaces ... 6

Method type .. 6

Association .. 8

Indication .. 8

Troubleshooting and Debugging Tips ... 12

Openwsman .. 12

WMI .. 15

References ... 18

Appendix ... 18

Figures

Figure 1: Components of WBEM Management. ... 3

WBEM Based Management in Linux

 Page 2

Introduction
The more datacenters grow in size and heterogeneity, the harder it gets for the administrators to
manage all the hardware. As most of the enterprise class datacenter is heterogeneous in nature, the
number of tools required to manage the servers swell beyond control, unless some open standards are
adopted by the manufacturers/vendors.

The Total Cost of Ownership (TCO) in an IT environment depends highly on the effectiveness of the
management tools deployed. The more diverse tools required for managing systems from different
vendors/manufacturers, the higher TCO will be. DMTF (Distributed Management Task Force) targets to
reduce the TCO by defining open standards which can be adopted by all the vendors and there by allow
a common set of tools be used for management of all the systems/devices.

In this paper, we will primarily look at the IBM initiated open-source implementation of the WBEM, CIM
standards and how to use them. This whitepaper is written to serve as a primer for users
configuring/working with CIM based management tools on Linux systems. We will be concentrating
mostly on "SBLIM sfcb" and "openwsman" implementations as the CIMOM (CIM Object Manager) and WS-
Management (Web Services Management Specification) protocol. These implementations are adopted
by many Linux distributions like RHEL, SLES, and Ubuntu etc. Also VMware ESX uses SFCB as the core
CIMOM to communicate the management information of the ESX Host. All the details (or commands)
mentioned below should work as such, on SLES and RHEL distributions.

Common Information Model (CIM)
CIM is an open standard that defines how the managed elements in an IT environment are represented
and the relation between these elements. CIM is an extensible data model for logically organizing
management data in a consistent, unified manner in a managed environment. CIM attempts to unify
and extend the current instrumentation standards like IPMI, SNMP and CMPI etc. CIM primarily allows
the information from multiple sources to be unified into a single object-oriented model. The guidelines
for mapping data from other instrumentation standards (like SNMP, IPMI) to CIM objects have already
been defined. CIM being an open standard obviates the need for the admins to learn any
vendor/manufacturer specific data models. Once the instrumentation providers for the
hardware/software components are installed, all the related objects can be handled similarly. CIM
model has primarily two parts: a specification and a schema.

CIM specification:

The specification defines the syntax, naming convention and the properties of devices. The
specification primarily defines the syntax language called MOF (Managed Object Format) which is based
on IDL (Interface Definition Language). The specification also defines the mapping to other
management standards like SNMP and IPMI.

CIM Schema:

The schema primarily captures notions that are common to a particular management area, but are
independent of the particular technology and implementation. Schema, primarily defines a specific set
of base classes and associations between these classes. This set serves as the base for the managed
elements in the IT environments. CIM schema defines most of the common elements in an IT

WBEM Based Management in Linux

 Page 3

environment like servers, Operating systems, network, services, and storage etc. Vendors can extend
these common elements and add their customizations or extensions.

The management data as well as the class definitions are expressed in ASCII based MOF (Managed
Object Format) file. The CIM clients talk to the remote CIMOM using http or https protocol. The CIM
operations over HTTP/S use xmlCIM bindings to transport CIM information across the network.

To deploy WBEM based system management tools five components are to be considered:

1) The managed device (In our case a Linux Host)

2) A CIM Object Manager and information repository for data (SFCB CIMOM)

3) Providers (instrumentation agents that provides data about the managed device/component)

4) A management client (an application using that data either for reporting or taking a scripted
action)

5) Finally the communication between these elements (WBEM).

Figure 1: Components of WBEM Management.

WBEM Based Management in Linux

 Page 4

SFCB CIMOM
SFCB is a lightweight CIMOM (CIM Object Manager) that responds to client requests and/or performs
system management tasks as required. SFCB is at the core of the CIMOM which is extended by installing
required providers and adapters. Along with the support for basic CIM operations like GetClass,
GetInstance, CreateInstance, DeleteInstance, and EnumerateInstance etc, SFCB also supports CIM
process and lifecycle indications.

SFCB is part of the SBLIM project hosted at http://sblim.sourceforge.net/. SFCB CIMOM only supports
the Open Group's CMPI provider interface. CMPI defines a common standard to interface the providers
with the management brokers (SFCB CIMOM in this context). The CMPI interface is designed to relieve
provider writers of all the CIMOMs’ implementation details and a CMPI provider is expected to work
seamlessly with various CIMOMs. Other implementations of CIMOMs include SNIA, tog-pegasus,
openwbem etc.

The CIM schema (http://dmtf.org/standards/cim) is used as the base for the class hierarchy used in
SFCB. The CIM schema is available as cim-schema package in most of the standard Linux distributions
and is installed along with the SFCB CIMOM.

SFCB stores all the CIM definition information from all the installed providers in a repository. The CIM
repository is primarily a collection of Class definitions and any dynamic data required to handle the
incoming client requests. There is one repository defined for each namespace and the commonly used
namespaces are root/cimv2 and root/interop. Typically, the "root/cimv2" is used for all the
instrumentation information and the "root/interop" namespace is used to handle indications. The
default directories used by the repositories of these two namespaces
are:/var/lib/sfcb/registration/repository/root/cimv2 and
/var/lib/sfcb/registration/repository/root/interop respectively.

NOTE: The defaults mentioned here are from the rpms/packages in SLES and RHEL distributions. These
may not apply when directly compiled from sources.

Make sure sblim-sfcb, cim-schema and a provider package (sblim-cmpi-*) is installed on the system.
The first provider installed will register some classes with SFCB and the CIM repository will be
populated.

For the providers to work properly, the related libraries have to be placed in specific directories. Also
the providers have to register themselves with the CIMOM. All these details are handled by the
rpm/deb packaging in various distributions. For example, the sblim-cmpi-base package has the
following command, in the post install steps, which registers the provider's Classes to the CIMOM (sfcb)
after installation:

/usr/share/sblim-cmpi-base/provider-register.sh \
 -r /usr/share/sblim-cmpi-base/Linux_BaseIndication.registration -m
/usr/share/sblim-cmpi-base/Linux_Base.mof /usr/share/sblim-cmpi-
base/Linux_BaseIndication.mof

Staging of the MOFs is part of the registration process. If the registration of the provider completes
without any issues, the provider's mof files will be staged (or copied) at
/var/lib/sfcb/stage/mofs/root/cimv2 (root/cimv2 is the default namespace) and the related
registration files will be created at /var/lib/sfcb/stage/regs. After the staging, the sfcbrepos command
will be ran by the registration script to compile the classes into the SFCB’s repository.

WBEM Based Management in Linux

 Page 5

The SFCB CIMOM by default is configured to listen on https (5989) port. These settings can be changed
in the /etc/sfcb/sfcb.cfg file. A configuration file for SFCB which listens on http, https ports and
doesn’t require any authentication is provided in the appendix. Following is a simple command to list
all class names compiled into the root/cimv2 namespace’s repository.

linux## wbemcli ecn http://username:password@hostname:root/cimv2

* wbemcli is a simple client that can talk to sfcb server.
* ecn – function to list all the classnames complied into repository
* http –what protocol to use to talk to the SFCB CIMOM.
* root/cimv2 -- The default namespace used it root/cimv2. If vendor-specific providers are installed
they can be staged in a different namespace.

Among the basic operations supported by CIMOM is enumeration. For example:

linux## wbemcli ei http://hostname:5988/root/cimv2:Linux_Processor

The above command will enumerate all the processors installed in the system. This enumeration
instance (ei) operation can be run on all the classes that are registered with type “instance”.

When the classes are defined, some of the properties are identified as "Key" properties. The properties
with Key as qualifier are able to uniquely identify a particular instance of a class. For example, the
class Linux_Processor has the properties SystemCreationClassName, SystemName, CreationClassName,
and DeviceID as Key properties. This implies a single processor can be identified using these key
properties. Following is an example of such a command:

linux## wbemcli gi
'http://10.208.46.61:5988/root/cimv2:Linux_Processor.SystemCreationClassName=
"Linux_ComputerSystem",SystemName="vmware-
share.us.dell.com",CreationClassName="Linux_Processor",DeviceID="0"'

The above command is requesting information of a processor, which has the following name-value
pairs:

SystemCreationClassName="Linux_ComputerSystem"
SystemName="vmware-share.us.dell.com"
CreationClassName="Linux_Processor"
DeviceID="0"

Please note some of the classes have multiple properties defined as Key properties. So, unless all the
Key properties values are given to the command, you cannot identify a specific instance of a class. As
mentioned above, the Linux_Processor class has four Key properties, so a request of the following kind
will not work.

linux## wbemcli gi
'http://10.208.46.61:5988/root/cimv2:Linux_Processor.SystemCreationClassName=
"Linux_ComputerSystem",SystemName="vmware-
share.us.dell.com",CreationClassName="Linux_Processor"'

To identify the Key properties of a class, enumerate instance names (ein) command can be used. For
example the following command:

WBEM Based Management in Linux

 Page 6

linux## wbemcli ein http://192.168.46.61:5988/root/cimv2:Linux_Processor

192.168.46.61:5988/root/cimv2:Linux_Processor.SystemCreationClassName="Linux_
ComputerSystem",SystemName="vmware-
share.us.dell.com",CreationClassName="Linux_Processor",DeviceID="0"
192.168.46.61:5988/root/cimv2:Linux_Processor.SystemCreationClassName="Linux_
ComputerSystem",SystemName="vmware-
share.us.dell.com",CreationClassName="Linux_Processor",DeviceID="1"

returns output as shown above, indicating that SystemCreationClassName, SystemName,
CreationClassName and DeviceID properties are key properties as mentioned above.

CIMOM’s other interfaces
The classes registered to the CIMOM’s repository can be of different types, primarily differentiated by
the type of the operations allowed by the class. The type of a class can be verified in the
SomeName.reg file in /var/lib/sfcb/stage/regs/ directory in which the class name is listed. For
example the Linux_Base.reg (registered by sblim-cmpi-base provider) file has the following lines:

[Linux_Porocessor]
 provider: OSBase_ProcessorProvider
 location: compiOSBase_ProcessorProvider
 type: instance
 namespace: root/cimv2

The above lines indicate that the name of the class is Linux_Processor; the name of the “provider” is
OSBase_ProcessorProvider. The value of the "location" indicates the name of the provider library
(/usr/lib/cmpi/libOSBase_ProcessorProvider.so in this case). The “type” indicates the operations that
can be performed on an instance of this class. The possible values are:

instance: objects can be created and enumerated

association: Objects of this class will define relationship between two or more other objects.

method: methods of this class can be called extrinsically

indication: This class can generate indications.

The type defined for a class can be any combination of the above mentioned types. The operations
GetInstance, CreateInstance, EnumerateInstance etc can be run only on classes of type “instance”.

Method type
The classes registered as type "method" allow the methods defined in the class to be called remotely.
For example the sblim-cmpi-syslog provider exposes some functions of the Syslog_Service class. The
registration file for the sblim-cmpi-syslog provider has the following lines along with other lines:

[Syslog_Service]
 provider: Syslog_Service
 location: Syslog_Service
 type: instance method
 namespace: root/cimv2

WBEM Based Management in Linux

 Page 7

The above lines indicate that an instance of Syslog_Service class also exposes a method interface. This
implies the methods defined in the Syslog_Service class can be called. The definition of the
Syslog_Service class can be checked with the following command:

linux## wbemcli gcd http://10.208.46.61:5988/root/cimv2:Syslog_Service

<CLASS NAME="Syslog_Service" SUPERCLASS="CIM_Service">
<PROPERTY NAME="Started" TYPE="boolean">
</PROPERTY>
<METHOD NAME="RequestStateChange" TYPE="uint32">
<PARAMETER NAME="RequestedState" TYPE="uint16">
</PARAMETER>
<PARAMETER.REFERENCE NAME="Job" REFERENCECLASS="CIM_ConcreteJob">
</PARAMETER.REFERENCE>
<PARAMETER NAME="TimeoutPeriod" TYPE="datetime">
</PARAMETER>
</METHOD>
<METHOD NAME="StartService" TYPE="uint32">
</METHOD>
<METHOD NAME="StopService" TYPE="uint32">
</METHOD>
<METHOD NAME="RestartService" TYPE="uint32">
</METHOD>
<METHOD NAME="ReloadService" TYPE="uint32">
</METHOD>
<METHOD NAME="CondRestartService" TYPE="uint32">
</METHOD>
<METHOD NAME="TryRestartService" TYPE="uint32">
</METHOD>
<METHOD NAME="ForceReloadService" TYPE="uint32">
</METHOD>
<METHOD NAME="ProbeService" TYPE="uint32">
</METHOD>
</CLASS>

According to the above class definition, "StartService" and "StopService" are among the methods that
can be called on the Linux server via CIMOM. In order to call the "StartService" function, run the
following command:

linux## wbemcm
'http://10.208.46.61:5988/root/cimv2:Syslog_Service.CreationClassName="Syslog
_Service",SystemCreationClassName="CIM_UnitaryComputerSystem",SystemName="vmw
are-share.us.dell.com",Name="syslog"' StartService

TIP: Please don't forget the single quotations (')

The first argument here would be the object (in the right namespace) along with its key values. The
second part of the "wbemcm" command is the name of the method to call. Since the "StartService"
method (according to the class definition) doesn't need any parameters, no parameters. If a method
like "RequestStateChange" has to be called, the values of the parameters "RequestedState" and
"TimeoutPeriod" have to be provided.

WBEM Based Management in Linux

 Page 8

Association
An association defines the relationship between two or more classes or objects. Component
associations establish “part of” relationship between managed elements and the Dependency
associations describe functional dependencies (one object cannot function with the other) or existence
dependencies (one object cannot exist without the other) between managed elements.

For example the CIM_USBPortOnHub association describes an existence dependency between
CIM_USBPort and CIM_USBHub classes. This class has two references defined. The reference
CIM_USBHub is defined as an antecedent and CIM_USBPort is defined as a dependent. This association
implies an usb port doesn’t exist without its hub.

Another example would be CIM_ChassisInRack association which makes a containing relationship
between a CIM_Rack and CIM_Chassis. The Groupcomponent is CIM_Rack and the PartComponent is
CIM_Chassis, indicating that a chassis should be part of a Rack.

Indication
An indication represents the occurrence of an event of interest. An event could be, a new device
attached to the server or a new service was started in the system or the CPU utilization has reached a
beyond a defined threshold etc.

Instances of indication classes are transient and cannot be obtained using the standard CIM Operations
like enumeration, get instance etc. They can only be received by subscribing to them. In order to
receive indications of interest, a Filter, a Handler and a Subscription instance have to be defined.

Filter (CIM_IndicationFilter): As the name suggests, a filter is used to filter the indications of interest
from all the indications received by the CIMOM. For example, a filter could request any indications of
CPU and memory usage going beyond a defined threshold. This filter will not report anything about any
h/w errors or any changes in the services of the system because it doesn't meet the criterion defined in
the filter.

Handler (CIM_IndicationHandlerCIMXML): This is the component which will receive/handle the incoming
indications. The handler can either just log all the incoming indications or take a scripted action based
on the indications received.

Subscription (CIM_IndicationSubscription): The subscription object primarily defines an association
between a Filter and a Handler instances. A Filter instance and a Handler are the references defined
for a subscription. Additionally, the Subscription instance also defines other properties of a
subscription's life like:

 a) How many times should an indication instance be sent to the Handler
 b) The Start time for the subscription
 c) Duration of the subscription etc

Indications are broadly categorized into two types:

a) Life Cycle Indications
b) Process Indications

WBEM Based Management in Linux

 Page 9

The CIM_InstIndcation and CIM_ClassIndication are the base classes for Life Cycle Indications and the
CIM_PorcessIndication class is the base class for Process Indications.

i) CIM_InstIndications: Tracks changes in objects. This implies any creation, deletion or modification of
objects in the CIM namespace along with any explicit calls to any extrinsic functions of the objects.

ii) CIM_ClassIndications: Tracks Class life cycle events. Creation, deletion or modification of any
classes.

iii) CIM_ProcessIndication: Tracks any alert notifications from individual objects. Along with handling
low-level instrumentation alerts, this class also provides SNMP Traps, DMI alerts and TMN events.

Let us walk through an example here. The sblim-cmpi-base package has an indication provider
Linux_OperatingSystemIndication. This can be verifiedverfied by the *.reg files staged at
/var/lib/sfcb/stage/regs/Linux_BaseIndication.reg file. The class Linux_OperatingSystemIndication is
defined of type “indication” in the registration file. An instance of this indication is created every time
when the value of OperationalStatus changes in the instance of Linux_OperatingSystem class. The
value of OperationalStatus variable is set based on the state of the system's CPU. If the CPU usage goes
above 90%, this value is set to 4 and if it below 90%, it is set to 2.

The current state of the CPU can be verified by:

linux## wbemcli -nl ei http://localhost:5988/root/cimv2:Linux_OperatingSystem
| grep OperationalStatus

-OperationalStatus=2

The Filter, Handler and Subscriptions instances will be created using the
SFCBCreateFilter.localhost.xml, SFCBCreateHandler.localhost.xml and
SFCBCreateSubscription.localhost.xml files which are part of the sblim-cmpi-base package's sources.
These XML files have the XML payload to be sent to the SFCB CIMOM to create a Filter, Handler and a
Subscription respectively. wbemcat command can be used as follows to send the xml content to
CIMOM.

linux## wbemcat -t http -h localhost -p 5988 -u root -pwd password
SFCBCreateFilter.localhost.xml

linux## wbemcat -t http -h localhost -p 5988 -u root -pwd password
SFCBCreateHandler.localhost.xml

linux## wbemcat -t http -h localhost -p 5988 -u root -pwd password
SFCBCreateSubscription.localhost.xml

The Filter, Handler and Subscription instances are going to be created in the root/interop namespace.
The following command can be used to check if they are created properly.

For Filter:

WBEM Based Management in Linux

 Page 10

linux## wbemcli ei http://localhost:5988/root/interop:CIM_IndicationFilter

localhost:5988/root/interop:CIM_IndicationFilter.SystemCreationClassName="CIM
_ComputerSystem",SystemName="localhost.localdomain",CreationClassName="CIM_In
dicationFilter",Name="OperatingSystemFilter0"
TemplateVariable=,QueryLanguage="WQL",Query="SELECT * FROM
CIM_InstModification",IndividualSubscriptionSupported=TRUE,SourceNamespaces="
root/cimv2",SourceNamespace="root/cimv2",Name="OperatingSystemFilter0",Creati
onClassName="CIM_IndicationFilter",SystemName="localhost.localdomain",SystemC
reationClassName="CIM_ComputerSystem",InstanceID=,Caption=,Description=,Eleme
ntName=,Generation=

For handler:

linux## wbemcli ei
http://localhost:5988/root/interop:CIM_IndicationHandlerCIMXML

localhost:5988/root/interop:CIM_IndicationHandlerCIMXML.SystemCreationClassNa
me="CIM_ComputerSystem",SystemName="localhost.localdomain",CreationClassName=
"CIM_IndicationHandlerCIMXML",Name="OperatingSystemHandler0"
Destination="file:///tmp/SFCB_OS_Listener.txt",OtherPersistenceType=,Persiste
nceType=2,OtherProtocol=,Protocol=2,Name="OperatingSystemHandler0",CreationCl
assName="CIM_IndicationHandlerCIMXML",SystemName="localhost.localdomain",Syst
emCreationClassName="CIM_ComputerSystem",InstanceID=,Caption=,Description=,El
ementName=,Generation=,Owner=

For subscription:

linux## wbemcli ei
http://localhost:5988/root/interop:CIM_IndicationSubscription

localhost:5988/root/interop:SFCB_IndicationSubscription.Handler=root/interop:
CIM_IndicationHandlerCIMXML.SystemCreationClassName="CIM_ComputerSystem",Syst
emName="localhost.localdomain",CreationClassName="CIM_IndicationHandlerCIMXML
",Name="OperatingSystemHandler0",Filter=root/interop:CIM_IndicationFilter.Sys
temCreationClassName="CIM_ComputerSystem",SystemName="localhost.localdomain",
CreationClassName="CIM_IndicationFilter",Name="OperatingSystemFilter0"
Handler=root/interop:CIM_IndicationHandlerCIMXML.SystemCreationClassName="CIM
_ComputerSystem",SystemName="localhost.localdomain",CreationClassName="CIM_In
dicationHandlerCIMXML",Name="OperatingSystemHandler0",Filter=root/interop:CIM
_IndicationFilter.SystemCreationClassName="CIM_ComputerSystem",SystemName="lo
calhost.localdomain",CreationClassName="CIM_IndicationFilter",Name="Operating
SystemFilter0",OnFatalErrorPolicy=,OtherOnFatalErrorPolicy=,FailureTriggerTim
eInterval=,SubscriptionState=2,OtherSubscriptionState=,TimeOfLastStateChange=
,SubscriptionDuration=,SubscriptionStartTime=20110101165017.656706-
360,SubscriptionTimeRemaining=,RepeatNotificationPolicy=,OtherRepeatNotificat
ionPolicy=,RepeatNotificationInterval=,RepeatNotificationGap=,RepeatNotificat
ionCount=,AlertOnStateChange=FALSE,LastIndicationIdentifier=,LastIndicationPr
oductionDateTime=,SubscriptionInfo=

WBEM Based Management in Linux

 Page 11

The Handler and Filter references in the subscription instance are defined as highlighted in the above
output. Please note, the Handler and Filter instances have to be created before a Subscription instance
can be created.

After all the three objects are created, increase the CPU usage to more than 90%, and you will notice
the following content appearing at the destination(/tmp/SFCB_OS_Listener.txt) of the Handler.
Content similar to the one below will be seen in the destination whenever an indication is created.

<?xml version="1.0" encoding="utf-8" ?>
<CIM CIMVERSION="2.0" DTDVERSION="2.0">
<MESSAGE ID="1" PROTOCOLVERSION="1.0">
<SIMPLEEXPREQ>
<EXPMETHODCALL NAME="ExportIndication">
<EXPPARAMVALUE NAME="NewIndication">
<INSTANCE CLASSNAME="CIM_InstModification">
<PROPERTY NAME="PreviousInstance" TYPE="string">
</PROPERTY>
<PROPERTY NAME="IndicationFilterName" TYPE="string">
</PROPERTY>
<PROPERTY NAME="OtherSeverity" TYPE="string">
</PROPERTY>
<PROPERTY NAME="PerceivedSeverity" TYPE="uint16">
</PROPERTY>
<PROPERTY NAME="IndicationTime" TYPE="datetime">
<VALUE>20110101170830.361880-360</VALUE>
</PROPERTY>
<PROPERTY.ARRAY NAME="CorrelatedIndications" TYPE="string">
<VALUE.ARRAY>
</VALUE.ARRAY>
</PROPERTY.ARRAY>
<PROPERTY NAME="IndicationIdentifier" TYPE="string">
<VALUE>CIM_InstModification</VALUE>
</PROPERTY>
<PROPERTY NAME="SourceInstance" TYPE="string">
</PROPERTY>
<PROPERTY NAME="SourceInstanceModelPath" TYPE="string">
</PROPERTY>
<PROPERTY NAME="SourceInstanceHost" TYPE="string">
</PROPERTY>
</INSTANCE>
</EXPPARAMVALUE>
</EXPMETHODCALL>
</SIMPLEEXPREQ>
</MESSAGE>
</CIM>

In order to delete the Subscription, Handler and Filter instances, the contents of
SFCBDeleteSubscription.localhost.xml, SFCBDeleteHandler.localhost.xml,
SFCBDeleteFilter.localhost.xml files can be used.

WBEM Based Management in Linux

 Page 12

Troubleshooting and Debugging Tips

i) The wbemcli command has an option (-dx) to print out the XML payload that is sent to the server and
received from the server. An example of one such command is shown below:

linux## wbemcli -dx ei http://10.208.46.61:5988/root/cimv2:Linux_Processor

ii) The sfcb service also has some tracing options that can be configured either in the configuration file
(sfcb.cfg) or using the -t option while starting the service. The list of components that can be traced
are returned for "sfcbd -t ?" command. If multiple components have to be traced, the final mask passed
to CIMOM should be OR of the masks of the individual components.

iii) If you run into any errors with the following message, it is most likely because of the way shell
handles the arguments to the commands. The best way to get around this problem would be enclose
the arguments of wbemcli in single quotes (‘).

*

* wbemcli: Parse Exception: Invalid name-value pair

*

Openwsman
Web Services for Management (WS-Management/WSMAN) is a SOAP (Simple Object Access Protocol)
based protocol defined by DTMF to seamlessly manage servers, services, devices, and applications
across multiple hardware vendors and multiple operating systems. WS-Management provides a common
way for systems to access and exchange information in an IT infrastructure from multiple and diverse
sources. WS-Management protocol provides a standard for constructing XML messages using various Web
Service standards like WS-Transfer, WS-Addressing, WS-Enumeration, WS-Eventing. The primary goal of
this protocol is provide interoperability and consistency across different types of devices or
components (operating system, firmware etc). openwsman
(http://sourceforge.net/projects/openwsman/) project is an open source implementation of WS-
Management specification enabling in-band management of linux/unix platforms. openwsman supports
the CIM data model and the conversion of the CIM data into WS-Man resources happens on the fly,
following the CIM bindings defined by DMTF.

WS-Management supports a common set of operations that are central to all systems. The supported
operations include:

Get, put, create, delete: to handle individual managed resources.

Enumerate: To enumerate all the instances of a managed resource.

Subscribe, Unsubscribe: Capture the events sent by a managed resource.

Discover: For discovering the managed resources and navigating between them.

Invoke: To Invoke a method on a managed resource with defined parameters and gather the output.

WBEM Based Management in Linux

 Page 13

openwsman-server is the "wsman server" package that has to be installed. Since openwsman in-turn
talks to CIMOM for all the management requests, the configuration file
(/etc/openwsman/openwsman.conf) lets the user to configure the details of the CIMOM. If an instance
of sfcb (CIMOM) service is running on the server where "wsman server" is running, the "SfcbLocal"
interface can be used to talk to the local sfcb server. This can be done by setting the value of
cim_client_frontend to "SfcbLocal". If the wsman server has to talk to a remote sfcb(CIMOM), the value
of cim_client_frontend has to be set to "XML" indicating that the communication with the sfcb (CIMOM)
will be over http and the values of host and port in [cim] section have to be set.

After the wsman server is configured properly, the wsman (wsmancli package) command line client
utility can be used to send requests to the server. A working copy of the configuration file for wsman is
available in the appendix. This configuration will get the wsman server to listen on 443 by default and
use the SfcbLocal interface to talk to the local SFCB CIMOM.

The following command can be used to get the version details of the wsman protocol supported by the
remote server:

linux## wsman identify --port 5986 --cacert=servercert.pem --username
root -p Password1 -h 10.208.46.61

<?xml version="1.0" encoding="UTF-8"?>
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsmid="http://schemas.dmtf.org/wbem/wsman/identity/1/wsmanidentity.xsd"
>
 <s:Header/>
 <s:Body>
 <wsmid:IdentifyResponse>

<wsmid:ProtocolVersion>http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd</wsmid:
ProtocolVersion>
 <wsmid:ProductVendor>Openwsman Project</wsmid:ProductVendor>
 <wsmid:ProductVersion>2.2.3.9</wsmid:ProductVersion>
 </wsmid:IdentifyResponse>
 </s:Body>
</s:Envelope>

This will return:

 * The WS-Management protocol version. For example,
"http://schemas.dmtf.org/wbem/wsman/1/wsman".

 * The product vendor, (Openwsman Project)

 * The product version (2.2.3.9)

In the openwsman.conf file, a couple of fake namespaces have been configured. The namespace to be
used while talking to Linux systems is "http://sblim.sf.net/wbem/wscim/1/cim-schema/2". For
example, the command to enumerate the processors on a linux host is:

WBEM Based Management in Linux

 Page 14

linux## wsman enumerate http://sblim.sf.net/wbem/wscim/1/cim-
schema/2/Linux_CSProcessor --port 443 --cacert=servercert.pem --username
root -p Password1 -h 10.208.46.61 --namespace=root/cimv2

*wsman -- is the dcomman line utility which is part of the wsmancli package.
*enumerate -- calling the enumerate method on the wsman server to enumerate all the instance of
Linux_CSProcessor.
*http://sblim.sf.net/wbem/wscim/1/cim-schema/2 -- Need to use this fake namespace on a Linux
system.
*Linux_CSProcessor -- the class to enumerate.
*443 -- The port number on which the openwsman server is listening
*servercert.pem -- the CA certificate from the server
*root/cimv2 -- is the namespace to enumerate the class in, on the CIMOM(sfcb).

For the rest of the paper, we will go over some of the examples of the wsman commands. Similar to
the get instance command to the CIMOM, wsman has the get operation which can be called as follows:

linux## wsman get 'http://sblim.sf.net/wbem/wscim/1/cim-
schema/2/Linux_Processor?SystemCreationClassName="Linux_ComputerSystem"&Syste
mName="linux-kjz7.site"&CreationClassName="Linux_Processor"&DeviceID="0"' -u
user -p pass --port=5986 --cacert=/etc/openwsman/servercert.pem -h
localhost --namespace=root/cimv2

The get operation needs all the key properties listed just like for the get instance command to the
CIMOM.

For creating a subscription to capture the indications of interest, the following command can be used:

linux## wsman subscribe 'http://schemas.dmtf.org/wbem/wscim/1/*' -x "SELECT *
FROM CIM_ProcessIndication" -D
'http://schemas.microsoft.com/wbem/wsman/1/WQL' -Z
'http://127.0.0.1:80/eventsink' --namespace=root/interop -H 10 --username
root --password Password1 -h localhost -G push -R --port 443 --
cacert=/etc/openwsman/servercert.pem

The output will have the following lines, along with other lines:

<wse:SubscribeResponse>
 <wse:SubscriptionManager>
 <wsa:Address>https://localhost:443/wsman</wsa:Address>
 <wsa:ReferenceParameters>
 <wse:Identifier>uuid:c2466b2c-9ab4-1ab4-8042-
5577ac565000</wse:Identifier>
 </wsa:ReferenceParameters>
 </wse:SubscriptionManager>
 </wse:SubscribeResponse>

The highlighted part in the above output will be the id which will be used to identify this subscription.
The Filter, Handler and the Subscription objects created by the above command can be verified with
the following commands:

WBEM Based Management in Linux

 Page 15

linux## wbemcli ei
http://root:pass@localhost:5988/root/interop:CIM_IndicationFilter| grep
c2466b2c-9ab4-1ab4-8042-5577ac565000

linux## wbemcli ei
http://root:pass@localhost:5988/root/interop:CIM_IndicationHandlerCIMXML|
grep c2466b2c-9ab4-1ab4-8042-5577ac565000

linux## wbemcli ei
http://root:pass@localhost:5988/root/interop:CIM_IndicationSubscription| grep
c2466b2c-9ab4-1ab4-8042-5577ac565000

The above subscribe command will send the indications to the target http://127.0.0.1:80/eventsink.
The indications at this location can be captured by running wseventsink command (available at
https://build.opensuse.org/project/show?project=systemsmanagement%3Awbem).

In the above subscription the delivery mode (-G) was chosen to be push. This implies, the indication
will be pushed to the target as soon as it appears. Pull is another possible mode.

The above subscription can be cancelled by running:

linux## wsman unsubscribe -i uuid: c2466b2c-9ab4-1ab4-8042-5577ac565000 --
namespace=root/interop -u root -p pass -h localhost

WMI
WMI (Windows Management Instrumentation) technology is Microsoft implementation of DMTF's WBEM
initiative that extends CIM (Common Information Model) to represent managed objects in windows
based management environments. WMI is available in Win ME, Windows 2000 and newer Windows
versions.

Winrm client which is part of the WMI in windows, can be used to talk to a remote openwsman server.

Follow the instructions at http://www.openwsman.org/openwsman-users-guide/vista-winrm-over-
openwsman-setup to configure the winrm client.

Client configuration:

C:\Users\Administrator>winrm set winrm/config/client/auth @{Basic="true"}
C:\Users\Administrator>winrm set winrm/config/client
@{AllowUnencrypted="true"}
C:\Users\Administrator>winrm set winrm/config/client
@{TrustedHosts="192.168.1.100"}

Server Configuration:

C:\Users\Administrator>winrm quickconfig
C:\Users\Administrator>winrm set winrm/config/service/auth @{Basic="true"}
C:\Users\Administrator>winrm set winrm/config/service
@{AllowUnencrypted="true"}

WBEM Based Management in Linux

 Page 16

To enumerate the processors on a remote openwsman server, the following command can be used:

C:\Users\Administrator>winrm enumerate http://sblim.sf.net/wbem/wscim/1/cim-
schema/2/Linux_CSProcessor -username:root -password:Password1 -
r:172.17.7.240:8889 -auth:basic -format:#text

Linux_CSProcessor
 GroupComponent
 Address =
http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
 ReferenceParameters
 ResourceURI = http://sblim.sf.net/wbem/wscim/1/cim-
schema/2/Linux_ComputerSystem
 SelectorSet
 Selector: CreationClassName = Linux_ComputerSystem, Name =
linux-cv22, __cimnamespace = root/cimv2
 PartComponent
 Address =
http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous
 ReferenceParameters
 ResourceURI = http://sblim.sf.net/wbem/wscim/1/cim-
schema/2/Linux_Processor
 SelectorSet
 Selector: SystemCreationClassName = Linux_ComputerSystem,
SystemName = linux-cv22, CreationClassName = Linux_Processor, DeviceID = 0,
__cimnamespace = root/cimv2

The above winrm command will gather the same information as the following wsman client command
(indicating there is only one processor in the system):

linux## wsman enumerate http://sblim.sf.net/wbem/wscim/1/cim-
schema/2/Linux_CSProcessor --port 8889 --username root -p Password1 -h
10.208.46.57 --namespace root/cimv2

<?xml version="1.0" encoding="UTF-8"?>
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:wsen="http://schemas.xmlsoap.org/ws/2004/09/enumeration">
 <s:Header>

<wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:
To>

<wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/enumeration/EnumerateRespon
se</wsa:Action>
 <wsa:RelatesTo>uuid:72e4207f-964c-164c-8002-159967e82400</wsa:RelatesTo>
 <wsa:MessageID>uuid:9c56b0db-9647-1647-8006-0000b5565000</wsa:MessageID>
 </s:Header>
 <s:Body>
 <wsen:EnumerateResponse>
 <wsen:EnumerationContext>9c54b717-9647-1647-8005-
0000b5565000</wsen:EnumerationContext>
 </wsen:EnumerateResponse>
 </s:Body>

WBEM Based Management in Linux

 Page 17

</s:Envelope>
<?xml version="1.0" encoding="UTF-8"?>
<s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope"
xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing"
xmlns:wsen="http://schemas.xmlsoap.org/ws/2004/09/enumeration"
xmlns:n1="http://sblim.sf.net/wbem/wscim/1/cim-schema/2/Linux_CSProcessor"
xmlns:wsman="http://schemas.dmtf.org/wbem/wsman/1/wsman.xsd">
 <s:Header>

<wsa:To>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous</wsa:
To>

<wsa:Action>http://schemas.xmlsoap.org/ws/2004/09/enumeration/PullResponse</w
sa:Action>
 <wsa:RelatesTo>uuid:72ed5304-964c-164c-8003-159967e82400</wsa:RelatesTo>
 <wsa:MessageID>uuid:9c753d95-9647-1647-8007-0000b5565000</wsa:MessageID>
 </s:Header>
 <s:Body>
 <wsen:PullResponse>
 <wsen:Items>
 <n1:Linux_CSProcessor>
 <n1:GroupComponent>

<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous<
/wsa:Address>
 <wsa:ReferenceParameters>
 <wsman:ResourceURI>http://sblim.sf.net/wbem/wscim/1/cim-
schema/2/Linux_ComputerSystem</wsman:ResourceURI>
 <wsman:SelectorSet>
 <wsman:Selector
Name="CreationClassName">Linux_ComputerSystem</wsman:Selector>
 <wsman:Selector Name="Name">linux-cv22</wsman:Selector>
 <wsman:Selector
Name="__cimnamespace">root/cimv2</wsman:Selector>
 </wsman:SelectorSet>
 </wsa:ReferenceParameters>
 </n1:GroupComponent>
 <n1:PartComponent>

<wsa:Address>http://schemas.xmlsoap.org/ws/2004/08/addressing/role/anonymous<
/wsa:Address>
 <wsa:ReferenceParameters>
 <wsman:ResourceURI>http://sblim.sf.net/wbem/wscim/1/cim-
schema/2/Linux_Processor</wsman:ResourceURI>
 <wsman:SelectorSet>
 <wsman:Selector
Name="SystemCreationClassName">Linux_ComputerSystem</wsman:Selector>
 <wsman:Selector Name="SystemName">linux-cv22</wsman:Selector>
 <wsman:Selector
Name="CreationClassName">Linux_Processor</wsman:Selector>
 <wsman:Selector Name="DeviceID">0</wsman:Selector>
 <wsman:Selector
Name="__cimnamespace">root/cimv2</wsman:Selector>
 </wsman:SelectorSet>
 </wsa:ReferenceParameters>
 </n1:PartComponent>
 </n1:Linux_CSProcessor>

WBEM Based Management in Linux

 Page 18

 </wsen:Items>
 <wsen:EndOfSequence/>
 </wsen:PullResponse>
 </s:Body>
</s:Envelope>

References
http://findarticles.com/p/articles/mi_m0BRZ/is_6_23/ai_105884207/

http://www.usenix.org/event/lisa09/tech/full_papers/routray.pdf

Sourceforge wiki page: http://sourceforge.net/apps/mediawiki/sblim/index.php?title=Sfcb

http://trac.openwsman.org/wiki/WsEventing

WS MAN Eventing: http://www.openwsman.org/book/export/html/50

http://www.openwsman.org/book/export/html/17

http://www.openwsman.org/openwsman-users-guide/vista-winrm-over-openwsman-setup

Life Cycle Controller and WSMAN:
http://dtcftp.com/pub/WebServices/Manuals/Lifecycle_Controller_Web_Services_for_Linux_05a.pdf

http://msdn.microsoft.com/en-us/library/aa384470%28v=vs.85%29.aspx

http://www.dell.com/downloads/global/power/ps3q06-20060111-dasari-oe.pdf

http://dmtf.org/documents/cim/cim-indications-events-white-paper-210

http://www.openwsman.org/files/MDCEventing.pdf

http://www.dmtf.org/standards/cim

http://www.openwsman.org/project/openwsman

http://doc.opensuse.org/products/draft/SLES/SLES-admin/cha.wbem.html

Appendix
Working SFCB configuration:

The following configuration enables SFCB to respond to http (5988), https(5989)requests and disables
all authentication. This configuration can be used as a base to start setting up the SFCB server.

httpPort: 5988
enableHttp: true
enableUds: true
httpProcs: 8
httpsPort: 5989
enableHttps: true
httpsProcs: 8
provProcs: 32

WBEM Based Management in Linux

 Page 19

doBasicAuth: false
doUdsAuth: true
basicAuthLib: sfcBasicPAMAuthentication
useChunking: true
keepaliveTimeout: 1
keepaliveMaxRequest: 10
sslKeyFilePath: /etc/sfcb/file.pem
sslCertificateFilePath: /etc/sfcb/server.pem
sslClientTrustStore: /etc/sfcb/client.pem
sslClientCertificate: ignore
certificateAuthLib: sfcCertificateAuthentication
registrationDir: /var/lib/sfcb/registration
providerDirs: /usr/lib64 /usr/lib64/cmpi
enableInterOp: true

FollowingFollwing are some sample commands from the remote client:

i) wbemcli ec http://my_user:my_password@10.208.46.57:5988/root/cim2 (http
with authentication)

ii) wbemcli -noverify ec https://my_user:my_password@10.208.46.57:5989 (https
with authentication but no cert verification)

iii) wbemcli ec http://10.208.46.57:5988/root/interop (http no authencation)

The sample openwsman configuration provided below will get wsman server to listen 443 port by
default. The authentication is configured suing pam. The wsman server will contact the local SFCB
CIMOM for all the management information.

[server]
port = 8889
ssl_port = 443
ssl_cert_file = /etc/openwsman/servercert.pem
ssl_key_file = /etc/openwsman/serverkey.pem
#digest_password_file = /etc/openwsman/digest_auth.passwd
#basic_password_file = /etc/openwsman/simple_auth.passwd
min_threads = 4
max_threads = 10
basic_authenticator = libwsman_pam_auth.so
basic_authenticator_arg = openwsman

#[client]
#port = 8889
#agent = openwsman 2.0.0

settings for the CIM plugin

can also be SfcbLocal for local connection with sfcb CIMOM running on same system
[cim]
cim_client_frontend = SfcbLocal

WBEM Based Management in Linux

 Page 20

default_cim_namespace = root/cimv2
#indication_source_namespace is used to define namespace where the Indications originate
indication_source_namespace = root/cimv2

The following are in part fake namespaces for some publicly available CIM implementations.
vendor_namespaces = OpenWBEM=http://schema.openwbem.org/wbem/wscim/1/cim-
schema/2,Linux=http://sblim.sf.net/wbem/wscim/1/cim-schema/2,OMC=http://schema.omc-
project.org/wbem/wscim/1/cim-schema/2,PG=http://schema.openpegasus.org/wbem/wscim/1/cim-
schema/2
CIMOM host, default is localhost
host = localhost
CIMOM port, default is 5988
port = 5988

Some more example commands:

1) wsman enumerate http://sblim.sf.net/wbem/wscim/1/cim-
schema/2/Linux_CSProcessor --port 8889 --username root -p Password1 -h
10.208.46.57 --namespace root/cimv2 (using http with authentication)

2) wsman enumerate http://sblim.sf.net/wbem/wscim/1/cim-
schema/2/Linux_CSProcessor --port 443 --username root -p password -h
localhost --namespace root/cimv2 --cacert=/etc/openwsman/servercert.pem
(using https along with a certificate and authentication.)

3) wsman enumerate http://sblim.sf.net/wbem/wscim/1/cim-
schema/2/Linux_CSProcessor --port 443 --username root -p password -h
localhost --namespace root/cimv2 --cacert=/etc/openwsman/dummy -noverifypeer
(using https with authentication and without certificate verification.)

Disclaimer
THIS WHITE PAPER IS FOR INFORMATIONAL PURPOSES ONLY, AND MAY CONTAIN TYPOGRAPHICAL
ERRORS AND TECHNICAL INACCURACIES. THE CONTENT IS PROVIDED AS IS, WITHOUT EXPRESS OR
IMPLIED WARRANTIES OF ANY KIND.

