Generated on Sat Aug 2 13:30:56 2014 for OGR by Doxygen | Generated on
Sat Aug 2 13:30:56 2014 for OGR by Doxygen

OGR

Contents

Chapter 1

OGR Simple Feature Library

The OGR Simple Features Library is a C++ open source library (and commandline tools) providing
read (and sometimes write) access to a variety of vector file formats including ESRI Shapefiles, S-57,
SDTS, PostGIS, Oracle Spatial, and Mapinfo mid/mif and TAB formats.

OGR is a part of the GDAL library.

Resources

* OGR Supported Formats : ESRI Shapefile, ESRI ArcSDE, MaplInfo (tab and mid/mif), GML,
KML, PostGIS, Oracle Spatial, ...

* OGR Utility Programs : ogrinfo, ogr2ogr, ogrtindex
* OGR Class Documentation

* OGR C++ API Read/Write Tutorial

* OGR Driver Implementation Tutorial

e ogr_api.h: OGR C API

e ogr_srs_api.h: OSR C API

* OGR Projections Tutorial

* OGR Architecture

* OGR SQL

* OGR - Feature Style Specification

e Adam’s 2.5 D Simple Features Proposal (OGC 99-402r2)

¢ Adam’s SRS WKT Clarification Proposal in html or doc format.

Download
Ready to Use Executables
The best way to get OGR utilities in ready-to-use form is to download the latest FWTools kit for

your platform. While large, these include builds of the OGR utilities with lots of optional components built-
in. Once downloaded follow the included instructions to setup your path and other environment variables

2 OGR Simple Feature Library

correctly, and then you can use the various OGR utilities from the command line. The kits also include
OpenkEV, a viewer that will display OGR supported vector files.

Source

The source code for this effort is intended to be available as OpenSource using an X Consortium style
license. The OGR library is currently a loosely coupled subcomponent of the GDAL library, so you get all
of GDAL for the "price" of OGR. See the GDAL Download and Building pages for details on getting
the source and building it.

Bug Reporting

GDAL/OGR bugs can be reported,and can be listed using Trac.

Mailing Lists

A gdal-announce mailing list subscription is a low volume way of keeping track of major develop-
ments with the GDAL/OGR project.

The gdal-dev@lists.osgeo.org mailing list can be used for discussion of development and user
issues related to OGR and related technologies. Subscriptions can be done, and archives reviewed on the
web.

Alternative Bindings for the OGR API

In addition to the C++ API primarily addressed in the online documentation, there is also a slightly less
complete C API implemented on top of the C++ API, and access available from Python.

The C API is primarily intended to provide a less fragile API since slight changes in the C++ API (such as
const correctness changes) can cause changes in method and class signatures that prevent use of new DLLs
with older clients. The C API is also generally easy to call from other languages which allow call out to
DLLs functions, such as Visual Basic, or Delphi. The API can be explored in the ogr_api .h include
file. The gdal/ogr/ogr_capi_test.c is a small sample program demonstrating use of the C APIL.

The Python API isn’t really well documented at this time, but parallels the C/C++ APIs. The interface
classes can be browsed in the pymod/ogr.py (simple features) and pymod/osr.py (coordinate systems)
python modules. The pymod/samples/assemblepoly.py sample script is one demonstration of using the
python API.

Chapter 2

OGR API Tutorial

4 OGR API Tutorial

This document is intended to document using the OGR C++ classes to read and write data from a file. It is
strongly advised that the read first review the OGR Architecture document describing the key classes
and their roles in OGR.

It also includes code snippets for the corresponding functions in C and Python.

2.1 Reading From OGR

For purposes of demonstrating reading with OGR, we will constuct a small utility for dumping point layers
from an OGR data source to stdout in comma-delimited format.

Initially it is necessary to register all the format drivers that are desired. This is normally accomplished by
calling OGRRegisterAll() (p. ??) which registers all format drivers built into GDAL/OGR.
In C++:

#include "ogrsf_frmts.h"
int main ()

{
OGRRegisterAll () ;

InC:

#include "ogr_api.h"
int main()

{
OGRRegisterAll () ;

Next we need to open the input OGR datasource. Datasources can be files, RDBMSes, directories full of
files, or even remote web services depending on the driver being used. However, the datasource name is
always a single string. In this case we are hardcoded to open a particular shapefile. The second argument
(FALSE) tells the OGRSFDriverRegistrar::Open() (p. ??) method that we don’t require update access.
On failure NULL is returned, and we report an error.

In C++:

OGRDataSource *poDS;

poDS = OGRSFDriverRegistrar::0pen("point.shp", FALSE);
if (poDS == NULL)
{

printf("Open failed.\n");

exit (1);

InC:

OGRDataSourceH hDS;

hDS = OGROpen("point.shp", FALSE, NULL);
if(hDS == NULL)
{

printf("Open failed.\n");

exit(1);

2.1 Reading From OGR 5

An OGRDataSource (p. ??) can potentially have many layers associated with it. The number of layers
available can be queried with OGRDataSource::GetLayerCount() (p. ??) and individual layers fetched
by index using OGRDataSource::GetLayer() (p. ??). However, we wil just fetch the layer by name.

In C++:

OGRLayer *polayer;

poLayer = poDS->GetLayerByName ("point");
InC:

OGRLayerH hLayer;

hlLayer = OGR_DS_GetLayerByName (hDS, "point");

Now we want to start reading features from the layer. Before we start we could assign an attribute or
spatial filter to the layer to restrict the set of feature we get back, but for now we are interested in getting
all features.

While it isn’t strictly necessary in this circumstance since we are starting fresh with the layer, it is often
wise to call OGRLayer::ResetReading() (p.??) to ensure we are starting at the beginning of the layer.
We iterate through all the features in the layer using OGRLayer::GetNextFeature() (p. ??). It will return
NULL when we run out of features.

In C++:

OGRFeature *poFeature;

poLayer—->ResetReading () ;
while((poFeature = polayer->GetNextFeature()) != NULL)
{

InC:

OGRFeatureH hFeature;

OGR_L_ResetReading (hLayer) ;
while((hFeature = OGR_L_GetNextFeature (hLayer)) != NULL)
{

In order to dump all the attribute fields of the feature, it is helpful to get the OGRFeatureDefn (p. ??).
This is an object, associated with the layer, containing the definitions of all the fields. We loop over all the
fields, and fetch and report the attributes based on their type.

In C++:

OGRFeatureDefn *poFDefn = polayer—->GetLayerDefn();
int iField;
for(iField = 0; iField < poFDefn->GetFieldCount (); iField++)
{
OGRFieldDefn xpoFieldDefn = poFDefn->GetFieldDefn(iField);

if (poFieldDefn->GetType () == OFTInteger)

printf("%d,", poFeature->GetFieldAsInteger(iField));
else if (poFieldDefn->GetType () == OFTReal)

printf("%.3f,", poFeature->GetFieldAsDouble (iField));
else if(poFieldDefn->GetType () == OFTString)

printf("%s,", poFeature->GetFieldAsString (iField));
else

printf("%s,", poFeature->GetFieldAsString (iField));

6 OGR API Tutorial

InC:

OGRFeatureDefnH hFDefn = OGR_L_GetLayerDefn (hLayer) ;
int iField;
for(iField =
{

0; iField < OGR_FD_GetFieldCount (hFDefn); iField++)

OGRFieldDefnH hFieldDefn = OGR_FD_GetFieldDefn (hFDefn, iField);

if (OGR_F1d_GetType (hFieldDefn) == OFTInteger)

printf("%d,", OGR_F_GetFieldAsInteger (hFeature, iField));
else if(OGR_F1d_GetType (hFieldDefn) == OFTReal)

printf("%.3f,", OGR_F_GetFieldAsDouble(hFeature, iField));
else if(OGR_F1d_GetType (hFieldDefn) == OFTString)

printf("%s,", OGR_F_GetFieldAsString(hFeature, iField));
else

printf("%s,", OGR_F_GetFieldAsString(hFeature, iField));

There are a few more field types than those explicitly handled above, but a reasonable representation of
them can be fetched with the OGRFeature::GetFieldAsString() (p. ??) method. In fact we could shorten
the above by using OGRFeature::GetFieldAsString() (p. ??) for all the types.

Next we want to extract the geometry from the feature, and write out the point geometry x and y. Geome-
tries are returned as a generic OGRGeometry (p. ??) pointer. We then determine the specific geometry
type, and if it is a point, we cast it to point and operate on it. If it is something else we write placeholders.

In C++:

OGRGeometry *poGeometry;

poGeometry = poFeature->GetGeometryRef () ;

if (poGeometry != NULL

&& wkbFlatten (poGeometry->getGeometryType ()) == wkbPoint)
{

OGRPoint *poPoint = (OGRPoint x) poGeometry;

printf("$.3f,%3.f\n", poPoint->getX (), poPoint->getY());
}
else
{

printf("no point geometry\n");

InC:

OGRGeometryH hGeometry;

hGeometry = OGR_F_GetGeometryRef (hFeature) ;
if (hGeometry != NULL
&& wkbFlatten (OGR_G_GetGeometryType (hGeometry)) == wkbPoint)

printf("$.3f,%3.f\n", OGR_G_GetX (hGeometry, 0), OGR_G_GetY (hGeometry
, 0))i
}
else
{

printf("no point geometry\n");

The wkbFlatten() macro is used above to convert the type for a wkbPoint25D (a point with a z coordinate)
into the base 2D geometry type code (wkbPoint). For each 2D geometry type there is a corresponding 2.5D
type code. The 2D and 2.5D geometry cases are handled by the same C++ class, so our code will handle
2D or 3D cases properly.

2.1 Reading From OGR 7

Note that OGRFeature::GetGeometryRef() (p. ??) returns a pointer to the internal geometry owned by
the OGRFeature (p.??). There we don’t actually deleted the return geometry. However, the OGR-
Layer::GetNextFeature() (p. ??) method returns a copy of the feature that is now owned by us. So at
the end of use we must free the feature. We could just "delete" it, but this can cause problems in windows
builds where the GDAL DLL has a different "heap" from the main program. To be on the safe side we use
a GDAL function to delete the feature.

In C++:

OGRFeature: :DestroyFeature (poFeature);

InC:

OGR_F_Destroy(hFeature);

The OGRLayer (p. ??) returned by OGRDataSource::GetLayerByName() (p. ??) is also a reference to
an internal layer owned by the OGRDataSource (p. ??) so we don’t need to delete it. But we do need to
delete the datasource in order to close the input file. Once again we do this with a custom delete method to
avoid special win32 heap issus.

In C++:

OGRDataSource: :DestroyDataSource(poDS);

InC:

OGR_DS_Destroy(hDS);

All together our program looks like this.
In C++:

#include "ogrsf_frmts.h"
int main ()

{
OGRRegisterAll ();

OGRDataSource *poDS;

poDS = OGRSFDriverRegistrar::0pen("point.shp", FALSE);
if(poDS == NULL)
{
printf("Open failed.\n");
exit(1);
}

OGRLayer =xpolayer;

poLayer = poDS->GetLayerByName ("point");

OGRFeature xpoFeature;

poLayer—->ResetReading() ;

while ((poFeature = polayer->GetNextFeature()) != NULL)
{

OGRFeatureDefn *poFDefn = polayer->GetLayerDefn();
int iField;

8 OGR API Tutorial

for(iField = 0; iField < poFDefn->GetFieldCount (); iField++)

{
OGRFieldDefn xpoFieldDefn = poFDefn->GetFieldDefn(iField);

if (poFieldDefn->GetType () == OFTInteger)

printf("%d,", poFeature->GetFieldAsInteger(iField));
else if(poFieldDefn->GetType () == OFTReal)

printf("%.3f,", poFeature->GetFieldAsDouble (iField));
else if(poFieldDefn->GetType () == OFTString)

printf("%s,", poFeature->GetFieldAsString (iField));
else

printf("%s,", poFeature->GetFieldAsString (iField));

OGRGeometry xpoGeometry;

poGeometry = poFeature->GetGeometryRef () ;

if (poGeometry != NULL

&& wkbFlatten (poGeometry->getGeometryType ()) == wkbPoint)
{

OGRPoint *poPoint = (OGRPoint x) poGeometry;

printf("%$.3f,%3.f\n", poPoint->getX(), poPoint->getY());
}
else
{

printf ("no point geometry\n");

}

OGRFeature: :DestroyFeature (poFeature);

OGRDataSource: :DestroyDataSource (poDS);

InC:

#include "ogr_api.h"

int main ()

OGRRegisterAll () ;

OGRDataSourceH hDS;
OGRLayerH hLayer;
OGRFeatureH hFeature;

hDS = OGROpen ("point.shp", FALSE, NULL);
if(hDS == NULL)
{

printf ("Open failed.\n");

exit (1);

hLayer = OGR_DS_GetLayerByName (hDS, "point");

OGR_L_ResetReading (hLayer) ;
while ((hFeature = OGR_L_GetNextFeature (hLayer)) != NULL)
{

OGRFeatureDefnH hFDefn;

int iField;

OGRGeometryH hGeometry;

hFDefn = OGR_L_GetLayerDefn (hLayer);

for(iField = 0; iField < OGR_FD_GetFieldCount (hFDefn); iField++)

2.1 Reading From OGR

OGRFieldDefnH hFieldDefn = OGR_FD_GetFieldDefn(hFDefn, iField);

if (OGR_F1ld_GetType (hFieldDefn) == OFTInteger)

printf("%d,", OGR_F_GetFieldAsInteger (hFeature, iField));
else if(OGR_F1ld_GetType (hFieldDefn) == OFTReal)

printf("%$.3f,", OGR_F_GetFieldAsDouble(hFeature, iField));
else if(OGR_F1ld_GetType (hFieldDefn) == OFTString)

printf("%s,", OGR_F_GetFieldAsString(hFeature, iField));
else

printf("%s,", OGR_F_GetFieldAsString(hFeature, iField));

hGeometry = OGR_F_GetGeometryRef (hFeature);
if (hGeometry != NULL
&& wkbFlatten (OGR_G_GetGeometryType (hGeometry)) == wkbPoint)

printf("$.3f,%3.f\n", OGR_G_GetX (hGeometry, 0), OGR_G_GetY (hGeometry
, 0))i
}

else

{

printf ("no point geometry\n");

OGR_F_Destroy(hFeature);

OGR_DS_Destroy(hDS);

In Python:

import sys
import ogr

ds = ogr.Open("point.shp")
if ds is None:
print "Open failed.\n"
sys.exit (1)
lyr = ds.GetLayerByName ("point")
lyr.ResetReading ()
for feat in lyr:
feat_defn = lyr.GetLayerDefn()
for i in range (feat_defn.GetFieldCount ()) :

field_defn = feat_defn.GetFieldDefn (i)

Tests below can be simplified with just
print feat.GetField (1)

if field_defn.GetType() == ogr.OFTInteger:
print "%d" % feat.GetFieldAsInteger (i)

elif field_defn.GetType() == ogr.OFTReal:
print "%$.3f" % feat.GetFieldAsDouble (i)

elif field_defn.GetType() == ogr.OFTString:

print "%$s" % feat.GetFieldAsString (i)
else:
print "%$s" % feat.GetFieldAsString (i)

geom = feat.GetGeometryRef ()

if geom is not None and geom.GetGeometryType () == ogr.wkbPoint:
print "%.3f, $.3f" % (geom.GetX (), geom.GetY())
else:

print "no point geometry\n"

10 OGR API Tutorial

ds = None

2.2 Writing To OGR

As an example of writing through OGR, we will do roughly the opposite of the above. A short program
that reads comma seperated values from input text will be written to a point shapefile via OGR.

As usual, we start by registering all the drivers, and then fetch the Shapefile driver as we will need it to
create our output file.

In C++:

#include "ogrsf_frmts.h"
int main ()

{

const char xpszDriverName = "ESRI Shapefile";
OGRSFDriver xpoDriver;

OGRRegisterAll () ;

poDriver = OGRSFDriverRegistrar::GetRegistrar () ->GetDriverByName (
pszDriverName) ;
if (poDriver == NULL)
{
printf("%s driver not available.\n", pszDriverName);

exit(1);

InC:

#include "ogr_api.h"

int main ()

{
const char xpszDriverName = "ESRI Shapefile";
OGRSFDriverH hDriver;

OGRRegisterAll () ;

hDriver = OGRGetDriverByName (pszDriverName) ;
if (hDriver == NULL)
{

printf("$s driver not available.\n", pszDriverName);
exit(1);

Next we create the datasource. The ESRI Shapefile driver allows us to create a directory full of shapefiles,
or a single shapefile as a datasource. In this case we will explicitly create a single file by including the
extension in the name. Other drivers behave differently. The second argument to the call is a list of option
values, but we will just be using defaults in this case. Details of the options supported are also format
specific.

InC ++:

OGRDataSource *xpoDS;
poDS = poDriver->CreateDataSource("point_out.shp", NULL);
if (poDS == NULL)
{
printf("Creation of output file failed.\n");

2.2 Writing To OGR 11

exit (1);

InC:

OGRDataSourceH hDS;

hDS = OGR_Dr_CreateDataSource(hDriver, "point_out.shp", NULL);
if (hDS == NULL)
{

printf("Creation of output file failed.\n");

exit (1);

Now we create the output layer. In this case since the datasource is a single file, we can only have one
layer. We pass wkbPoint to specify the type of geometry supported by this layer. In this case we aren’t
passing any coordinate system information or other special layer creation options.

In C++:

OGRLayer =*polayer;

polLayer = poDS->Createlayer("point_out", NULL, wkbPoint, NULL);
if (polLayer == NULL)
{

printf ("Layer creation failed.\n");

exit(1);

InC:

OGRLayerH hLayer;

hlLayer = OGR_DS_Createlayer (hDS, "point_out", NULL, wkbPoint, NULL);
if(hLayer == NULL)
{

printf ("Layer creation failed.\n");

exit (1);

Now that the layer exists, we need to create any attribute fields that should appear on the layer. Fields
must be added to the layer before any features are written. To create a field we initialize an OGRField
(p- ??) object with the information about the field. In the case of Shapefiles, the field width and precision
is significant in the creation of the output .dbf file, so we set it specifically, though generally the defaults
are OK. For this example we will just have one attribute, a name string associated with the X,y point.

Note that the template OGRField (p. ??) we pass to CreateField() is copied internally. We retain ownership
of the object.

In C++:
OGRFieldDefn oField("Name", OFTString);
oField.SetWidth (32);
if (polLayer->CreateField(&oField) != OGRERR_NONE)
{

printf ("Creating Name field failed.\n");
exit (1);

In C:

12 OGR API Tutorial

OGRFieldDefnH hFieldDefn;

hFieldDefn = OGR_F1d_Create("Name", OFTString);
OGR_F1d_SetWidth(hFieldDefn, 32);

if(OGR_L_CreateField(hlLayer, hFieldDefn, TRUE) != OGRERR_NONE)
{

printf ("Creating Name field failed.\n");
exit(1);

OGR_F1d_Destroy (hFieldDefn) ;

The following snipping loops reading lines of the form "X,y,name" from stdin, and parsing them.
InC++andinC:

double x, y;
char szName[33];

while(!feof (stdin)
&& fscanf(stdin, "%1f,%1f,%32s", &x, &y, szName) == 3)

To write a feature to disk, we must create a local OGRFeature (p. ??), set attributes and attach geometry
before trying to write it to the layer. It is imperative that this feature be instantiated from the OGRFea-
tureDefn (p. ??) associated with the layer it will be written to.

In C++:
OGRFeature xpoFeature;
poFeature = OGRFeature::CreateFeature(polayer—>GetLayerDefn ());
poFeature->SetField("Name", szName);

InC:
OGRFeatureH hFeature;
hFeature = OGR_F_Create(OGR_L_GetLayerDefn(hLayer));
OGR_F_SetFieldString(hFeature, OGR_F_GetFieldIndex (hFeature, "Name"), sz

Name) ;

We create a local geometry object, and assign its copy (indirectly) to the feature. The OGRFea-
ture::SetGeometryDirectly() (p. ??) differs from OGRFeature::SetGeometry() (p. ??) in that the direct
method gives ownership of the geometry to the feature. This is generally more efficient as it avoids an extra
deep object copy of the geometry.

In C++:
OGRPoint pt;
pt.setX(x);
pt.setY(y);
poFeature—->SetGeometry (&pt);
InC:

OGRGeometryH hPt;
hPt = OGR_G_CreateGeometry (wkbPoint) ;
OGR_G_SetPoint_2D (hPt, 0, x, Vy);

OGR_F_SetGeometry (hFeature, hPt);
OGR_G_DestroyGeometry (hPt) ;

2.2 Writing To OGR 13

Now we

create a feature in the file. The OGRLayer::CreateFeature() (p. ??) does not take ownership of

our feature so we clean it up when done with it.

In C++:

InC:

if (polLayer->CreateFeature(poFeature) != OGRERR_NONE)
{
printf("Failed to create feature in shapefile.\n");
exit (1);

OGRFeature: :DestroyFeature (poFeature);

if (OGR_L_CreateFeature(hlLayer, hFeature) != OGRERR_NONE)
{
printf("Failed to create feature in shapefile.\n");
exit (1);

OGR_F_Destroy (hFeature);

Finally we need to close down the datasource in order to ensure headers are written out in an orderly way
and all resources are recovered.

In C++:

OGRDataSource: :DestroyDataSource (poDS);

InC:

OGR_DS_Destroy(hDS);

The same program all in one block looks like this:

In C++:

#include "ogrsf_frmts.h"

int main ()

{

const char xpszDriverName = "ESRI Shapefile";
OGRSFDriver xpoDriver;

OGRRegisterAll () ;

poDriver = OGRSFDriverRegistrar::GetRegistrar () ->GetDriverByName (
pszDriverName) ;
if(poDriver == NULL)
{
printf("%$s driver not available.\n", pszDriverName);
exit(1);
}
OGRDataSource *xpoDS;
poDS = poDriver->CreateDataSource("point_out.shp", NULL);
if (poDS == NULL)

{

14 OGR API Tutorial

printf("Creation of output file failed.\n");
exit(1);

OGRLayer *polayer;

poLayer = poDS->Createlayer("point_out", NULL, wkbPoint, NULL);
if (poLayer == NULL)
{

printf ("Layer creation failed.\n");

exit (1);

OGRFieldDefn oField("Name", OFTString);
oField.SetWidth (32);

if (polLayer->CreateField(&oField) != OGRERR_NONE)
{

printf("Creating Name field failed.\n");

exit(1);

double x, y;
char szName[33];

while(!feof (stdin)
&& fscanf(stdin, "%1f,%1f,%32s", &x, &y, szName) == 3)

OGRFeature xpoFeature;

poFeature = OGRFeature::CreateFeature(polayer—>GetLayerDefn ());
poFeature->SetField("Name", szName);

OGRPoint pt;

pt.setX(

X);
pt.setY(y)

poFeature—->SetGeometry (&pt);

if (polLayer—->CreateFeature(poFeature) != OGRERR_NONE)
{
printf("Failed to create feature in shapefile.\n");
exit (1);

OGRFeature: :DestroyFeature (poFeature);

OGRDataSource: :DestroyDataSource (poDS);

InC:

#include "ogr_api.h"

int main ()
{
const char xpszDriverName = "ESRI Shapefile";
OGRSFDriverH hDriver;
OGRDataSourceH hDS;
OGRLayerH hLayer;
OGRFieldDefnH hFieldDefn;
double x, y;
char szName[33];

2.2 Writing To OGR

OGRRegisterAll () ;

hDriver = OGRGetDriverByName (pszDriverName) ;

if (hDriver == NULL)

{
printf("%s driver not available.\n", pszDriverName);
exit(1);

hDS = OGR_Dr_CreateDataSource(hDriver, "point_out.shp", NULL);
if (hDS == NULL)

printf("Creation of output file failed.\n");
exit(1);

hLayer = OGR_DS_CreatelLayer (hDS, "point_out", NULL, wkbPoint, NULL);
if (hLayer == NULL)
{

printf("Layer creation failed.\n");

exit(1);
hFieldDefn = OGR_F1ld_Create("Name", OFTString);
OGR_F1d_SetWidth(hFieldDefn, 32);
if(OGR_L_CreateField(hlLayer, hFieldDefn, TRUE) != OGRERR_NONE)
{

printf ("Creating Name field failed.\n");

exit (1);

OGR_F1d_Destroy (hFieldDefn) ;

while(!feof (stdin)

&& fscanf(stdin, "%1f,%1f,%32s", &x, &y, szName) == 3)
{
OGRFeatureH hFeature;
OGRGeometryH hPt;
hFeature = OGR_F_Create(OGR_L_GetLayerDefn(hLayer));
OGR_F_SetFieldString(hFeature, OGR_F_GetFieldIndex (hFeature, "Name"), sz
Name) ;
hPt = OGR_G_CreateGeometry (wkbPoint) ;
OGR_G_SetPoint_2D (hPt, 0, x, Vv);
OGR_F_SetGeometry (hFeature, hPt);
OGR_G_DestroyGeometry (hPt) ;
if (OGR_L_CreateFeature(hlLayer, hFeature) != OGRERR_NONE)

{

printf("Failed to create feature in shapefile.\n");
exit (1);

OGR_F_Destroy(hFeature);

OGR_DS_Destroy(hDS);

In Python :

import sys
import ogr

16 OGR API Tutorial

import string

driverName = "ESRI Shapefile"

drv = ogr.GetDriverByName (driverName)

if drv is None:
print "%s driver not available.\n" % driverName
sys.exit (1)

ds = drv.CreateDataSource("point_out.shp")
if ds is None:
print "Creation of output file failed.\n"
sys.exit (1)

lyr = ds.Createlayer ("point_out", None, ogr.wkbPoint)
if lyr is None:

print "Layer creation failed.\n"

sys.exit (1)

field defn = ogr.FieldDefn("Name", ogr.OFTString)
field_defn.SetWidth(32)

if lyr.CreateField (field_defn) != 0:
print "Creating Name field failed.\n"
sys.exit (1)

Expected format of user input: x y name
linestring = raw_input ()
linelist = string.split (linestring)

while len(linelist) == 3
x = float (linelist [0
y = float(linelist[1
name = linelist([2]

1)
1)
feat = ogr.Feature(lyr.GetLayerDefn())

feat.SetField("Name", name)

pt = ogr.Geometry (ogr.wkbPoint)
pt.SetPoint_2D (0, x, V)

feat.SetGeometry (pt)

if lyr.CreateFeature(feat) != 0:
print "Failed to create feature in shapefile.\n"
sys.exit (1)

feat .Destroy ()

linestring = raw_input ()
linelist = string.split(linestring)

ds = None

Chapter 3

OGR Architecture

18 OGR Architecture

This document is intended to document the OGR classes. The OGR classes are intended to be generic (not
specific to OLE DB or COM or Windows) but are used as a foundation for implementing OLE DB Provider
support, as well as client side support for SFCOM. It is intended that these same OGR classes could be
used by an implementation of SFCORBA for instance or used directly by C++ programs wanting to use an
OpenGIS simple features inspired API.

Because OGR is modelled on the OpenGIS simple features data model, it is very helpful to review
the SFCOM, or other simple features interface specifications which can be retrieved from the Open
Geospatial Consortium web site. Data types, and method names are modelled on those from the
interface specifications.

3.1 Class Overview

¢ Geometry (ogr_geometry.h): The geometry classes (OGRGeometry (p. ??), etc) encapsulate
the OpenGIS model vector data as well as providing some geometry operations, and translation
to/from well known binary and text format. A geometry includes a spatial reference system (projec-
tion).

¢ Spatial Reference (ogr_spatialref.h): An OGRSpatialReference (p.??) encapsulates the
definition of a projection and datum.

* Feature (ogr_feature.h): The OGRFeature (p. ??) encapsulate the definition of a whole fea-
ture, that is a geometry and a set of attributes.

¢ Feature Class Definition (ogr_feature.h): The OGRFeatureDefn (p. ??) class capsures the
schema (set of field definitions) for a group of related features (normally a whole layer).

* Layer (ogrsf_frmts.h): OGRLayer (p. ??) is an abstract base class represent a layer of features
in an OGRDataSource (p. ??).

* Data Source (ogrsf_frmts.h): An OGRDataSource (p. ??) is an abstract base class represent-
ing a file or database containing one or more OGRLayer (p. ??) objects.

* Drivers (ogrsf_frmts.h): An OGRSFDriver (p. ??) represents a translator for a specific for-
mat, opening OGRDataSource (p. ??) objects. All available drivers are managed by the OGRSF-
DriverRegistrar (p. ??).

3.2 Geometry

The geometry classes are represent various kinds of vector geometry. All the geometry classes derived
from OGRGeometry (p.??) which defines the common services of all geometries. Types of geome-
try include OGRPoint (p. ??), OGRLineString (p. ??), OGRPolygon (p. ??), OGRGeometryCollection
(p- ??7), OGRMultiPolygon (p. ??), OGRMultiPoint (p. 2?), and OGRMultiLineString (p. 2?).

Additional intermediate abstract base classes contain functionality that could eventually be implemented
by other geometry types. These include OGRCurve (p. ??) (base class for OGRLineString (p.??)) and
OGRSurface (p. ??) (base class for OGRPolygon (p. ??)). Some intermediate interfaces modelled in the
simple features abstract model and SFCOM are not modelled in OGR at this time. In most cases the
methods are aggregated into other classes. This may change.

The OGRGeometryFactory (p.??) is used to convert well known text, and well known binary format
data into geometries. These are predefined ascii and binary formats for representing all the types of simple
features geometries.

3.3 Spatial Reference 19

In a manner based on the geometry object in SFCOM, the OGRGeometry (p. ??) includes a reference to
an OGRSpatialReference (p. ??) object, defining the spatial reference system of that geometry. This is
normally a reference to a shared spatial reference object with reference counting for each of the OGRGe-
ometry (p. ??) objects using it.

Many of the spatial analysis methods (such as computing overlaps and so forth) are not implemented at
this time for OGRGeometry (p. ??).

While it is theoretically possible to derive other or more specific geometry classes from the existing OGR-
Geometry (p.??) classes, this isn’t as aspect that has been well thought out. In particular, it would be
possible to create specialized classes using the OGRGeometryFactory (p. ??) without modifying it.

3.3 Spatial Reference

The OGRSpatialReference (p. ??) class is intended to store an OpenGIS Spatial Reference System def-
inition. Currently local, geographic and projected coordinate systems are supported. Vertical coordinate
systems, geocentric coordinate systems, and compound (horizontal + vertical) coordinate systems are not
supported.

The spatial coordinate system data model is inherited from the OpenGIS Well Known Text format. A
simple form of this is defined in the Simple Features specifications. A more sophisticated form is found
in the Coordinate Transformation specification. The OGRSpatialReference (p. ??) is built on the features
of the Coordinate Transformation specification but is intended to be compatible with the earlier simple
features form.

There is also an associated OGRCoordinateTransformation (p. ??) class that encapsulates use of PROJ.4
for converting between different coordinate systems. There is a tutorial available describing how to
use the OGRSpatialReference (p. ??) class.

3.4 Feature / Feature Definition

The OGRGeometry (p. ??) captures the geometry of a vector feature ... the spatial position/region of a
feature. The OGRFeature (p. ??) contains this geometry, and adds feature attributes, feature id, and a
feature class identify.

The set of attributes, their types, names and so forth is represented via the OGRFeatureDefn (p. ??) class.
One OGRFeatureDefn (p. ??) normally exists for a layer of features. The same definition is shared in a
reference counted manner by the feature of that type (or feature class).

The feature id (FID) of a feature is intended to be a unique identifier for the feature within the layer it is
a member of. Freestanding features, or features not yet written to a layer may have a null (OGRNullFID)
feature id. The feature ids are modelled in OGR as a long integer; however, this is not sufficiently expressive
to model the natural feature ids in some formats. For instance, the GML feature id is a string, and the row
id in Oracle is larger than 4 bytes.

The feature class also contains an indicator of the types of geometry allowed for that feature class (returned
as an OGRwkbGeometryType from OGRFeatureDefn::GetGeomType() (p. ??)). If this is wkbUnknown
then any type of geometry is allowed. This implies that features in a given layer can potentially be of
different geometry types though they will always share a common attribute schema.

The OGRFeatureDefn (p.??) also contains a concept of default spatial reference system for all features
of that type and a feature class name (normally used as a layer name).

20 OGR Architecture

3.5 Layer

An OGRLayer (p. ??) represents a layer of features within a data source. All features in an OGRLayer
(p- ??) share a common schema and are of the same OGRFeatureDefn (p.??). An OGRLayer (p.??)
class also contains methods for reading features from the data source. The OGRLayer (p.??) can be
thought of as a gateway for reading and writing features from an underlying data source, normally a file
format. In SFCOM and other table based simple features implementation an OGRLayer (p. ??) represents
a spatial table.

The OGRLayer (p. ??) includes methods for sequential and random reading and writing. Read access (via
the OGRLayer::GetNextFeature() (p. ??) method) normally reads all features, one at a time sequentially;
however, it can be limited to return features intersecting a particular geographic region by installing a
spatial filter on the OGRLayer (p. ??) (via the OGRLayer::SetSpatialFilter() (p. ??) method).

One flaw in the current OGR architecture is that the spatial filter is set directly on the OGRLayer (p. ??)
which is intended to be the only representative of a given layer in a data source. This means it isn’t possible
to have multiple read operations active at one time with different spatial filters on each. This aspect may
be revised in the future to introduct an OGRLayerView class or something similar.

Another question that might arise is why the OGRLayer (p. ??) and OGRFeatureDefn (p. ??) classes are
distinct. An OGRLayer (p. ??) always has a one-to-one relationship to an OGRFeatureDefn (p. ??), so
why not amalgamate the classes. There are two reasons:

1. As defined now OGRFeature (p.??) and OGRFeatureDefn (p. ??) don’t depend on OGRLayer
(p- ??), so they can exist independently in memory without regard to a particular layer in a data store.

2. The SF CORBA model does not have a concept of a layer with a single fixed schema the way that
the SFCOM and SFSQL models do. The fact that features belong to a feature collection that is
potentially not directly related to their current feature grouping may be important to implementing
SFCORBA support using OGR.

The OGRLayer (p. ??) class is an abstract base class. An implementation is expected to be subclassed for
each file format driver implemented. OGRLayers are normally owned directly by their OGRDataSource
(p- ??), and aren’t instantiated or destroyed directly.

3.6 Data Source

An OGRDataSource (p. ??) represents a set of OGRLayer (p. ??) objects. This usually represents a single
file, set of files, database or gateway. An OGRDataSource (p. ??) has a list of OGRLayer’s which it owns
but can return references to.

OGRDataSource (p. ??) is an abstract base class. An implementation is expected to be subclassed for each
file format driver implemented. OGRDataSource (p. ??) objects are not normally instantiated directly but
rather with the assistance of an OGRSFDriver (p. ??). Deleting an OGRDataSource (p. ??) closes access
to the underlying persistent data source, but does not normally result in deletion of that file.

An OGRDataSource (p.??) has a name (usually a filename) that can be used to reopen the data source
with an OGRSFDriver (p. 2?).

The OGRDataSource (p. ??) also has support for executing a datasource specific command, normally a
form of SQL. This is accomplished via the OGRDataSource::ExecuteSQL() (p. ??) method. While some
datasources (such as PostGIS and Oracle) pass the SQL through to an underlying database, OGR also
includes support for evaluating a subset of the SQL SELECT statement against any datasource.

3.7 Drivers 21

3.7 Drivers

An OGRSFDriver (p. ??) object is instantiated for each file format supported. The OGRSFDriver (p. ??)
objects are registered with the OGRSFDriverRegistrar (p. ??), a singleton class that is normally used to
open new data sources.

It is intended that a new OGRSFDriver (p. ??) derived class be implemented for each file format to be
supported (along with a file format specific OGRDataSource (p. ??), and OGRLayer (p. ??) classes).

On application startup registration functions are normally called for each desired file format. These func-
tions instantiate the appropriate OGRSFDriver (p. ??) objects, and register them with the OGRSFDriver-
Registrar (p. ??). When a data source is to be opened, the registrar will normally try each OGRSFDriver
(p- ??) in turn, until one succeeds, returning an OGRDataSource (p. ??) object.

It is not intended that the OGRSFDriverRegistrar (p. ??) be derived from.

22

OGR Architecture

Chapter 4

OGR Driver Implementation Tutorial

24 OGR Driver Implementation Tutorial

4.1 Opverall Approach

In general new formats are added to OGR by implementing format specific drivers with subclasses of
OGRSFDriver (p. ??), OGRDataSource (p. ??) and OGRLayer (p. ??). The OGRSFDriver (p. ??) sub-
class is registered with the OGRSFDriverRegistrar (p. ??) at runtime.

Before following this tutorial to implement an OGR driver, please review the OGR Architecture doc-
ument carefully.

The tutorial will be based on implementing a simple ascii point format.

4.2 Contents

1. Implementing OGRSFDriver (p. ??)
2. Basic Read Only Data Source (p. ??)

3. Read Only Layer (p.??)

4.3 Implementing OGRSFDriver

The format specific driver class is implemented as a subclass of OGRSFDriver (p.??). One instance of
the driver will normally be created, and registered with the OGRSFDriverRegistrar(). The instantiation of
the driver is normally handled by a global C callable registration function, similar to the following placed
in the same file as the driver class.

void RegisterOGRSPF ()

{
OGRSFDriverRegistrar::GetRegistrar () ->RegisterDriver (new OGRSPFDriver);

}

The driver class declaration generally looks something like this for a format with read or read and update
access (the Open() method), creation support (the CreateDataSource() method), and the ability to delete a
datasource (the DeleteDataSource() method).

class OGRSPFDriver : public OGRSFDriver

{
public:
~OGRSPFDriver () ;

const char *GetName () ;
OGRDataSource *Open(const char x, int);
OGRDataSource xCreateDataSource(const char %, char *=*);
OGRErr DeleteDataSource(const char *pszName);
int TestCapability (const char «*);

bi

The constructor generally does nothing. The OGRSFDriver::GetName() (p. ??) method returns a static
string with the name of the driver. This name is specified on the commandline when creating datasources
so it is generally good to keep it short and without any special characters or spaces.

OGRSPFDriver: :~OGRSPFDriver ()

4.4 Basic Read Only Data Source 25

{
}

const char *OGRSPFDriver: :GetName ()
{

return "SPEF";

}

The Open() method is called by OGRSFDriverRegistrar::Open() (p. ??), or from the C APl OGROpen()
(p- ??). The OGRSFDriver::Open() (p. ??) method should quietly return NULL if the passed filename is
not of the format supported by the driver. If it is the target format, then a new OGRDataSource (p. ??)
object for the datasource should be returned.

It is common for the Open() method to be delegated to an Open() method on the actual format’s OGR-
DataSource (p. ??) class.

OGRDataSource xOGRSPFDriver::0pen(const char x pszFilename, int bUpdate)
{
OGRSPFDataSource *poDS = new OGRSPFDataSource();

if(!'poDS->Open(pszFilename, bUpdate))
{
delete poDS;
return NULL;
}

else
return poDS;

In OGR the capabilities of drivers, datasources and layers are determined by calling TestCapability() on the
various objects with names strings representing specific optional capabilities. For the driver the only two
capabilities currently tested for are the ability to create datasources and to delete them. In our first pass as a
read only SPF driver, these are both disabled. The default return value for unrecognised capabilities should
always be FALSE, and the symbolic defines for capability names (defined in ogr_core.h (p. ??)) should be
used instead of the literal strings to avoid typos.

int OGRSPFDriver::TestCapability(const char x pszCap)

{
if (EQUAL (pszCap,ODrCCreateDataSource))
return FALSE;
else if(EQUAL (pszCap,ODrCDeleteDataSource))
return FALSE;
else
return FALSE;

Examples of the CreateDataSource() and DeleteDataSource() methods are left for the section on creation
and update.

4.4 Basic Read Only Data Source

We will start implementing a minimal read-only datasource. No attempt is made to optimize operations,
and default implementations of many methods inherited from OGRDataSource (p. ??) are used.

The primary responsibility of the datasource is to manage the list of layers. In the case of the SPF format a
datasource is a single file representing one layer so there is at most one layer. The "name" of a datasource
should generally be the name passed to the Open() method.

26 OGR Driver Implementation Tutorial

The Open() method below is not overriding a base class method, but we have it to implement the open
operation delegated by the driver class.

For this simple case we provide a stub TestCapability() that returns FALSE for all extended capabilities.
The TestCapability() method is pure virtual, so it does need to be implemented.

class OGRSPFDataSource : public OGRDataSource
{

char *pszName;
OGRSPFLayer *xpapolayers;
int nLayers;
public:
OGRSPFDataSource () ;

~0OGRSPFDataSource () ;

int Open (const char * pszFilename, int bUpdate);
const char *GetName () { return pszName; }

int GetLayerCount () { return nlLayers; }

OGRLayer *GetLayer (int);

int TestCapability(const char %=) { return FALSE; }

bi

The constructor is a simple initializer to a default state. The Open() will take care of actually attaching it
to a file. The destructor is responsible for orderly cleanup of layers.

OGRSPFDataSource: :OGRSPFDataSource ()

{
papolayers = NULL;
nlLayers = 0;

pszName = NULL;
}

OGRSPFDataSource: : ~OGRSPFDataSource ()

{
for(int i = 0; i < nLayers; i++)
delete papolayers[i];
CPLFree(papolayers);

CPLFree(pszName);

The Open() method is the most important one on the datasource, though in this particular instance it passes
most of it’s work off to the OGRSPFLayer constructor if it believes the file is of the desired format.

Note that Open() methods should try and determine that a file isn’t of the identified format as efficiently
as possible, since many drivers may be invoked with files of the wrong format before the correct driver
is reached. In this particular Open() we just test the file extension but this is generally a poor way of
identifying a file format. If available, checking "magic header values" or something similar is preferrable.

In the case of the SPF format, update in place is not supported, so we always fail if bUpdate is FALSE.

int OGRSPFDataSource: :0pen(const char xpszFilename, int bUpdate)

4.5 Read Only Layer 27

// Does this appear to be an .spf file?

if(!'EQUAL(CPLGetExtension(pszFilename), "spf"))
return FALSE;

if (bUpdate)
{
CPLError (CE_Failure, CPLE_OpenFailed,
"Update access not supported by the SPF driver.");
return FALSE;

[

// Create a corresponding layer.

f
nLayers = 1;
papolayers = (OGRSPFLayer x%) CPLMalloc(sizeof (voidx));
papolayers[0] = new OGRSPFLayer (pszFilename);

pszName = CPLStrdup(pszFilename);

return TRUE;

A GetLayer() method also needs to be implemented. Since the layer list is created in the Open() this is just
a lookup with some safety testing.

OGRLayer *OGRSPFDataSource::GetLayer(int iLayer)

{
if(ilLayer < 0 || iLayer >= nlayers
return NULL;
else
return papolayers[ilLayer];

4.5 Read Only Layer

The OGRSPFLayer is implements layer semantics for an .spf file. It provides access to a set of feature
objects in a constistent coordinate system with a particular set of attribute columns. Our class definition
looks like this:

class OGRSPFLayer : public OGRLayer
{

OGRFeatureDefn *poFeatureDefn;

FILE *fp;

int nNextFID;
public:

OGRSPFLayer (const char xpszFilename);
~OGRSPFLayer () ;

void ResetReading () ;
OGRFeature = GetNextFeature () ;
OGRFeatureDefn = GetLayerDefn () { return poFeatureDefn; }

int TestCapability(const char =) { return FALSE; }
Vi

28 OGR Driver Implementation Tutorial

The layer constructor is responsible for initialization. The most important initialization is setting up the
OGRFeatureDefn (p. ??) for the layer. This defines the list of fields and their types, the geometry type
and the coordinate system for the layer. In the SPF format the set of fields is fixed - a single string field and
we have no coordinate system info to set.

Pay particular attention to the reference counting of the OGRFeatureDefn (p. ??). As OGRFeature’s for
this layer will also take a reference to this definition it is important that we also establish a reference on
behalf of the layer itself.

OGRSPFLayer: :0GRSPFLayer (const char xpszFilename)

{
nNextFID = 0;

poFeatureDefn = new OGRFeatureDefn(CPLGetBasename (pszFilename));
poFeatureDefn->Reference () ;
poFeatureDefn->SetGeomType (wkbPoint);

OGRFieldDefn oFieldTemplate("Name", OFTString);
poFeatureDefn->AddFieldDefn (&oFieldTemplate);

fp = VSIFOpenL(pszFilename, "r");
if(fp == NULL)
return;

Note that the destructor uses Release() on the OGRFeatureDefn (p.??). This will destroy the feature
definition if the reference count drops to zero, but if the application is still holding onto a feature from
this layer, then that feature will hold a reference to the feature definition and it will not be destroyed here
(which is good!).

OGRSPFLayer: :~OGRSPFLayer ()

{
poFeatureDefn->Release () ;
if(fp != NULL)
VSIFCloseL(fp);

The GetNextFeature() method is usually the work horse of OGRLayer (p.??) implementations. It is
responsible for reading the next feature according to the current spatial and attribute filters installed.

The while() loop is present to loop until we find a satisfactory feature. The first section of code is for
parsing a single line of the SPF text file and establishing the X, y and name for the line.

OGRFeature *OGRSPFLayer: :GetNextFeature ()

{
-

// Loop till we find a feature matching our requirements.

while (TRUE)
{

const char *pszLine;
const char xpszName;

pszLine = CPLReadLineL(fp);
// Are we at end of file (out of features)?

if(pszLine == NULL)
return NULL;

4.5 Read Only Layer 29

double dfX;
double dfy;

dfX = atof (pszLine);

pszLine = strstr(pszLine,"|");
if(pszLine == NULL)

continue; // we should issue an error!
else

pszLine++;

dfY = atof (pszLine);

pszlLine = strstr(pszLine,"|");
if(pszLine == NULL)

continue; // we should issue an error!
else

pszName = pszLine+l;

The next section turns the X, y and name into a feature. Also note that we assign a linearly incremented
feature id. In our case we started at zero for the first feature, though some drivers start at 1.

OGRFeature *poFeature = new OGRFeature(poFeatureDefn);

poFeature->SetGeometryDirectly (new OGRPoint (dfX, dfY));
poFeature->SetField(0, pszName);
poFeature—->SetFID(nNextFID++);

Next we check if the feature matches our current attribute or spatial filter if we have them. Methods on
the OGRLayer (p.??) base class support maintain filters in the OGRLayer (p.??) member fields m_-
poFilterGeom (spatial filter) and m_poAttrQuery (attribute filter) so we can just use these values here if
they are non-NULL. The following test is essentially "stock" and done the same in all formats. Some
formats also do some spatial filtering ahead of time using a spatial index.

If the feature meets our criteria we return it. Otherwise we destroy it, and return to the top of the loop to
fetch another to try.

if((m_poFilterGeom == NULL
|| FilterGeometry(poFeature->GetGeometryRef ()))
&& (m_poAttrQuery == NULL

| | m_poAttrQuery->Evaluate(poFeature)))
return poFeature;

delete poFeature;

While in the middle of reading a feature set from a layer, or at any other time the application can call
ResetReading() which is intended to restart reading at the beginning of the feature set. We implement this
by seeking back to the beginning of the file, and resetting our feature id counter.

void OGRSPFLayer::ResetReading ()

{
VSIFSeekL(fp, 0, SEEK_SET);
nNextFID = 0;

In this implementation we do not provide a custom implementation for the GetFeature() method. This
means an attempt to read a particular feature by it’s feature id will result in many calls to GetNextFeature()

30 OGR Driver Implementation Tutorial

till the desired feature is found. However, in a sequential text format like spf there is little else we could do
anyways.

There! We have completed a simple read-only feature file format driver.

Chapter 5

OGR SQL

32 OGR SQL

The OGRDataSource (p.??) supports executing commands against a datasource via the OGRData-
Source::ExecuteSQL() (p. ??) method. While in theory any sort of command could be handled this way,
in practice the mechanism is used to provide a subset of SQL SELECT capability to applications. This
page discusses the generic SQL implementation implemented within OGR, and issue with driver specific
SQL support.

The OGRLayer (p. ??) class also supports applying an attribute query filter to features returned using the
OGRLayer::SetAttributeFilter() (p.??) method. The syntax for the attribute filter is the same as the
WHERE clause in the OGR SQL SELECT statement. So everything here with regard to the WHERE
clause applies in the context of the SetAttributeFilter() method.

NOTE: OGR SQL has been reimplemented for GDAL/OGR 1.8.0. Many features discussed below, notably
arithmetic expressions, and expressions in the field list, were not support in GDAL/OGR 1.7.x and earlier.
See RFC 28 for details of the new features in GDAL/OGR 1.8.0.

5.1 SELECT

The SELECT statement is used to fetch layer features (analygous to table rows in an RDBMS) with the
result of the query represented as a temporary layer of features. The layers of the datasource are analygous
to tables in an RDBMS and feature attributes are analygous to column values. The simpliest form of OGR
SQL SELECT statement looks like this:

SELECT * FROM polylayer

In this case all features are fetched from the layer named "polylayer”, and all attributes of those features
are returned. This is essentially equivelent to accessing the layer directly. In this example the "x" is the list
of fields to fetch from the layer, with "+" meaning that all fields should be fetched.

This slightly more sophisticated form still pulls all features from the layer but the schema will only contain
the EAS_ID and PROP_VALUE attributes. Any other attributes would be discarded.

SELECT eas_id, prop_value FROM polylayer

A much more ambitious SELECT, restricting the features fetched with a WHERE clause, and sorting the
results might look like:

SELECT * from polylayer WHERE prop_value > 220000.0 ORDER BY prop_value DESC

This select statement will produce a table with just one feature, with one attribute (named something like
"count_eas_id") containing the number of distinct values of the eas_id attribute.

SELECT COUNT (DISTINCT eas_id) FROM polylayer

5.1.1 Field List Operators

The field list is a comma separate list of the fields to be carried into the output features from the source
layer. They will appear on output features in the order they appear on in the field list, so the field list may
be used to re-order the fields.

A special form of the field list uses the DISTINCT keyword. This returns a list of all the distinct values of
the named attribute. When the DISTINCT keyword is used, only one attribute may appear in the field list.
The DISTINCT keyword may be used against any type of field. Currently the distinctness test against a

5.1 SELECT 33

string value is case insensitive in OGR SQL. The result of a SELECT with a DISTINCT keyword is a layer
with one column (named the same as the field operated on), and one feature per distinct value. Geometries
are discarded. The distinct values are assembled in memory, so alot of memory may be used for datasets
with a large number of distinct values.

SELECT DISTINCT areacode FROM polylayer

There are also several summarization operators that may be applied to columns. When a summarization
operator is applied to any field, then all fields must have summarization operators applied. The summa-
rization operators are COUNT (a count of instances), AVG (numerical average), SUM (numericla sum),
MIN (lexical or numerical minimum), and MAX (lexical or numerical maximum). This example produces
a variety of sumarization information on parcel property values:

SELECT MIN (prop_value), MAX (prop_value), AVG(prop_value), SUM(prop_value),
COUNT (prop_value) FROM polylayer WHERE prov_name = "Ontario"

It is also possible to apply the COUNT() operator to a DISTINCT SELECT to get a count of distinct values,
for instance:

SELECT COUNT (DISTINCT areacode) FROM polylayer

Note: prior to OGR 1.9.0, null values were counted in COUNT(column_name) or COUNT(DISTINCT
column_name), which was not conformant with the SQL standard. Since OGR 1.9.0, only non-null values
are counted.

non

As a special case, the COUNT() operator can be given a "x" argument instead of a field name which is a
short form for count all the records.

SELECT COUNT (%) FROM polylayer

Field names can also be prefixed by a table name though this is only really meaningful when performing
joins. It is further demonstrated in the JOIN section.

Field definitions can also be complex expressions using arithmetic, and functional operators. However, the
DISTINCT keyword, and summarization operators like MIN, MAX, AVG and SUM may not be applied to
expression fields.

SELECT cost+tax from invoice

or

SELECT CONCAT (owner_first_name,’ ’,owner_last_name) from properties

5.1.1.1 Functions

Starting with OGR 1.8.2, the SUBSTR function can be used to extract a substring from a string. Its syntax
is the following one : SUBSTR(string_expr, start_offset [, length]). It extracts a substring of string_expr,
starting at offset start_offset (1 being the first character of string_expr, 2 the second one, etc...). If start_-
offset is a negative value, the substring is extracted from the end of the string (-1 is the last character of
the string, -2 the character before the last character, ...). If length is specified, up to length characters are
extracted from the string. Otherwise the remainder of the string is extracted.

Note: for the time being, the character as considered to be equivalent to bytes, which may not be appropriate
for multi-byte encodings like UTF-8.

SELECT SUBSTR (’abcdef’,1,2) FROM xxx -—> "ab’
SELECT SUBSTR(’abcdef’, 4) FROM xxx -=> ’def’
SELECT SUBSTR ('’ abcdef’,-2) FROM xxx -—> 'ef’

34 OGR SQL

5.1.1.2 Using the field name alias

OGR SQL supports renaming the fields following the SQL92 specification by using the AS keyword ac-
cording to the following example:

SELECT %, OGR_STYLE AS STYLE FROM polylayer

The field name alias can be used as the last operation in the column specification. Therefore we cannot
rename the fields inside an operator, but we can rename whole column expression, like these two:

SELECT COUNT (areacode) AS ’'count’ FROM polylayer
SELECT dollars/100.0 AS cents FROM polylayer

5.1.1.3 Changing the type of the fields

Starting with GDAL 1.6.0, OGR SQL supports changing the type of the columns by using the SQL92
compliant CAST operator according to the following example:

SELECT %, CAST(OGR_STYLE AS character (255)) FROM rivers

Currently casting to the following target types are supported:

1. character(field_length). By default, field_length=1.
2. float(field_length)

3. numeric(field_length, field_precision)
integer(field_length)

date(field_length)

AN U

time(field_length)

7. timestamp(field_length)

Specifying the field_length and/or the field_precision is optional. An explicit value of zero can be used as
the width for character() to indicate variable width. Conversion to the “integer list’, ’double list” and ’string
list” OGR data types are not supported, which doesn’t conform to the SQL92 specification.

While the CAST operator can be applied anywhere in an expression, including in a WHERE clause, the
detailed control of output field format is only supported if the CAST operator is the "outer most" operators
on a field in the field definition list. In other contexts it is still useful to convert between numeric, string
and date data types.

5.1.2 WHERE

The argument to the WHERE clause is a logical expression used select records from the source layer.
In addition to its use within the WHERE statement, the WHERE clause handling is also used for OGR
attribute queries on regular layers via OGRLayer::SetAttributeFilter() (p. 2?).

In addition to the arithmetic and other functional operators available in expressions in the field selection
clause of the SELECT statement, in the WHERE context logical operators are also available and the eval-
uated value of the expression should be logical (true or false).

5.1 SELECT 35

The available logical operators are =, !=, <>, <, >, <=, >=, LIKE and ILIKE, BETWEEN and IN.
Most of the operators are self explanitory, but is is worth nothing that != is the same as <>, the string
equality is case insensitive, but the <, >, <= and >= operators are case sensitive. Both the LIKE and
ILIKE operators are case insensitive.

The value argument to the LIKE operator is a pattern against which the value string is matched. In this
pattern percent (%) matches any number of characters, and underscore (_) matches any one character.
An optional ESCAPE escape_char clause can be added so that the percent or underscore characters can be
searched as regular characters, by being preceded with the escape_char.

String Pattern Matches?
Alberta ALB% Yes
Alberta _lberta Yes
St. Alberta _lberta No
St. Alberta %1lberta Yes
Robarts St. %$Robarts$% Yes
12345 123%45 Yes
123.45 127245 No
NON 1PO SNONS Yes
L4C 5E2 SNON% No

The IN takes a list of values as it’s argument and tests the attribute value for membership in the provided
set.

Value Value Set Matches?
321 IN (456,123) No
"Ontario" IN ("Ontario","BC") Yes
"Ont" IN ("Ontario","BC") No
1 IN (0,2,4,6) No

The syntax of the BETWEEN operator is "field_name BETWEEN valuel AND value2" and it is equivalent
to "field_name >= valuel AND field_name <= value2".

In addition to the above binary operators, there are additional operators for testing if a field is null or not.
These are the IS NULL and IS NOT NULL operators.

Basic field tests can be combined in more complicated predicates using logical operators include AND,
OR, and the unary logical NOT. Subexpressions should be bracketed to make precidence clear. Some
more complicated predicates are:

SELECT % FROM poly WHERE (prop_value >= 100000) AND (prop_value < 200000)
SELECT x FROM poly WHERE NOT (area_code LIKE "NON&%")
SELECT % FROM poly WHERE (prop_value IS NOT NULL) AND (prop_value < 100000)

5.1.3 WHERE Limitations

1. Fields must all come from the primary table (the one listed in the FROM clause).

2. All string comparisons are case insensitive except for <, >, <= and >=.

5.14 ORDER BY

The ORDER BY clause is used force the returned features to be reordered into sorted order (ascending or
descending) on one of the field values. Ascending (increasing) order is the default if neither the ASC or
DESC keyword is provided. For example:

36 OGR SQL

SELECT x FROM property WHERE class_code = 7 ORDER BY prop_value DESC
SELECT x FROM property ORDER BY prop_value

SELECT * FROM property ORDER BY prop_value ASC

SELECT DISTINCT zip_code FROM property ORDER BY zip_code

Note that ORDER BY clauses cause two passes through the feature set. One to build an in-memory table
of field values corresponded with feature ids, and a second pass to fetch the features by feature id in the
sorted order. For formats which cannot efficiently randomly read features by feature id this can be a very
expensive operation.

Sorting of string field values is case sensitive, not case insensitive like in most other parts of OGR SQL.

5.1.5 JOINs

OGR SQL supports a limited form of one to one JOIN. This allows records from a secondary table to be
looked up based on a shared key between it and the primary table being queried. For instance, a table of
city locations might include a nation_id column that can be used as a reference into a secondary nation
table to fetch a nation name. A joined query might look like:

SELECT city.*, nation.name FROM city
LEFT JOIN nation ON city.nation_id = nation.id

This query would result in a table with all the fields from the city table, and an additional "nation.name"
field with the nation name pulled from the nation table by looking for the record in the nation table that has
the "id" field with the same value as the city.nation_id field.

Joins introduce a number of additional issues. One is the concept of table qualifiers on field names. For
instance, referring to city.nation_id instead of just nation_id to indicate the nation_id field from the city
layer. The table name qualifiers may only be used in the field list, and within the ON clause of the join.

Wildcards are also somewhat more involved. All fields from the primary table (city in this case) and the
secondary table (nation in this case) may be selected using the usual * wildcard. But the fields of just one
of the primary or secondary table may be selected by prefixing the asterix with the table name.

The field names in the resulting query layer will be qualified by the table name, if the table name is given as
a qualifier in the field list. In addition field names will be qualified with a table name if they would conflict
with earlier fields. For instance, the following select would result might result in a results set with a name,
nation_id, nation.nation_id and nation.name field if the city and nation tables both have the nation_id and
name fieldnames.

SELECT % FROM city LEFT JOIN nation ON city.nation_id = nation.nation_id

On the other hand if the nation table had a continent_id field, but the city table did not, then that field
would not need to be qualified in the result set. However, if the selected instead looked like the following
statement, all result fields would be qualified by the table name.

SELECT city.*, nation.x FROM city
LEFT JOIN nation ON city.nation_id = nation.nation_id

In the above examples, the nation table was found in the same datasource as the city table. However, the
OGR join support includes the ability to join against a table in a different data source, potentially of a
different format. This is indicated by qualifying the secondary table name with a datasource name. In this
case the secondary datasource is opened using normal OGR semantics and utilized to access the secondary
table untill the query result is no longer needed.

5.2 SPECIAL FIELDS 37

SELECT % FROM city
LEFT JOIN ’ /usr2/data/nation.dbf’ .nation ON city.nation_id = nation.nation_id

While not necessarily very useful, it is also possible to introduce table aliases to simplify some SELECT
statements. This can also be useful to disambiguate situations where ables of the same name are being
used from different data sources. For instance, if the actual tables names were messy we might want to do
something like:

SELECT c.name, n.name FROM project_615_city c
LEFT JOIN ’ /usr2/data/project_615_nation.dbf’.project_615_nation n
ON c.nation_id = n.nation_id

It is possible to do multiple joins in a single query.

SELECT city.name, prov.name, nation.name FROM city
LEFT JOIN province ON city.prov_id = province.id
LEFT JOIN nation ON city.nation_id = nation.id

5.1.6 JOIN Limitations

1. Joins can be very expensive operations if the secondary table is not indexed on the key field being
used.

2. Joined fields may not be used in WHERE clauses, or ORDER BY clauses at this time. The join is
essentially evaluated after all primary table subsetting is complete, and after the ORDER BY pass.

3. Joined fields may not be used as keys in later joins. So you could not use the province id in a city to
lookup the province record, and then use a nation id from the province id to lookup the nation record.
This is a sensible thing to want and could be implemented, but is not currently supported.

4. Datasource names for joined tables are evaluated relative to the current processes working directory,
not the path to the primary datasource.

5. These are not true LEFT or RIGHT joins in the RDBMS sense. Whether or not a secondary record
exists for the join key or not, one and only one copy of the primary record is returned in the result
set. If a secondary record cannot be found, the secondary derived fields will be NULL. If more than
one matching secondary field is found only the first will be used.

5.2 SPECIAL FIELDS

The OGR SQL query processor treats some of the attributes of the features as built-in special fields can
be used in the SQL statements likewise the other fields. These fields can be placed in the select list, the
WHERE clause and the ORDER BY clause respectively. The special field will not be included in the result
by default but it may be explicitly included by adding it to the select list. When accessing the field values
the special fields will take pecedence over the other fields with the same names in the data source.

5.2.1 FID

Normally the feature id is a special property of a feature and not treated as an attribute of the feature. In
some cases it is convenient to be able to utilize the feature id in queries and result sets as a regular field.
To do so use the name FID. The field wildcard expansions will not include the feature id, but it may be
explicitly included using a syntax like:

SELECT FID, % FROM nation

38 OGR SQL

5.2.2 OGR_GEOMETRY

Some of the data sources (like MaplInfo tab) can handle geometries of different types within the same
layer. The OGR_GEOMETRY special field represents the geometry type returned by OGRGeome-
try::getGeometryName() (p. ??) and can be used to distinguish the various types. By using this field one
can select particular types of the geometries like:

SELECT x FROM nation WHERE OGR_GEOMETRY=’POINT’ OR OGR_GEOMETRY=’'POLYGON’

5.2.3 OGR_GEOM_WKT

The Well Known Text representation of the geometry can also be used as a special field. To select the WKT
of the geometry OGR_GEOM_WKT might be included in the select list, like:

SELECT OGR_GEOM_WKT, x FROM nation

Using the OGR_GEOM_WKT and the LIKE operator in the WHERE clause we can get similar effect as
using OGR_GEOMETRY:

SELECT OGR_GEOM_WKT, x FROM nation WHERE OGR_GEOM_WKT
LIKE ’"POINT%’ OR OGR_GEOM_WKT LIKE ’POLYGONS'

5.24 OGR_GEOM_AREA

(Since GDAL 1.7.0)

The OGR_GEOM_AREA special field returns the area of the feature’s geometry computed by the
OGRSurface::get_Area() (p.??) method. For OGRGeometryCollection (p. ??) and OGRMultiPoly-
gon (p. ??) the value is the sum of the areas of its members. For non-surface geometries the returned area
is 0.0.

For example, to select only polygon features larger than a given area:

SELECT x FROM nation WHERE OGR_GEOM_AREA > 10000000’

5.2.5 OGR_STYLE
The OGR_STYLE special field represents the style string of the feature returned by OGRFea-
ture::GetStyleString() (p.??). By using this field and the LIKE operator the result of the query can

be filtered by the style. For example we can select the annotation features as:

SELECT x FROM nation WHERE OGR_STYLE LIKE ’'LABELS%’

5.3 CREATE INDEX

Some OGR SQL drivers support creating of attribute indexes. Currently this includes the Shapefile driver.
An index accelerates very simple attribute queries of the form fieldname = value, which is what is used by
the JOIN capability. To create an attribute index on the nation_id field of the nation table a command like
this would be used:

CREATE INDEX ON nation USING nation_id

5.4 DROP INDEX 39

5.3.1 Index Limitations

1. Indexes are not maintained dynamically when new features are added to or removed from a layer.
2. Very long strings (longer than 256 characters?) cannot currently be indexed.
3. To recreate an index it is necessary to drop all indexes on a layer and then recreate all the indexes.

4. Indexes are not used in any complex queries. Currently the only query the will accelerate is a simple
"field = value" query.

5.4 DROP INDEX

The OGR SQL DROP INDEX command can be used to drop all indexes on a particular table, or just the
index for a particular column.

DROP INDEX ON nation USING nation_id
DROP INDEX ON nation

5.5 ALTER TABLE

(OGR >=1.9.0)
The following OGR SQL ALTER TABLE commands can be used.

1. "ALTER TABLE tablename ADD [COLUMN] columnname columntype" to add a new field. Sup-
ported if the layer declares the OLCCreateField capability.

2. "ALTER TABLE tablename RENAME [COLUMN] oldcolumnname TO newcolumnname" to re-
name an existing field. Supported if the layer declares the OLCAlterFieldDefn capability.

3. "ALTER TABLE tablename ALTER [COLUMN] columnname TYPE columntype" to change the
type of an existing field. Supported if the layer declares the OLCAlterFieldDefn capability.

4. "ALTER TABLE tablename DROP [COLUMN] columnname" to delete an existing field. Supported
if the layer declares the OLCDeleteField capability.

The columntype value follows the syntax of the types supported by the CAST operator descrived above.

ALTER TABLE nation ADD COLUMN myfield integer

ALTER TABLE nation RENAME COLUMN myfield TO myfield2

ALTER TABLE nation ALTER COLUMN myfield2 TYPE character (15)
ALTER TABLE nation DROP COLUMN myfield2

5.6 DROP TABLE

(OGR >=1.9.0)

The OGR SQL DROP TABLE command can be used to delete a table. This is only supported on data-
sources that declare the ODsCDeleteLayer capability.

DROP TABLE nation

40 OGR SQL

5.7 ExecuteSQL()

SQL is executed against an OGRDataSource (p. ??), not against a specific layer. The call looks like this:

OGRLayer * OGRDataSource::ExecuteSQL(const char *pszSQLCommand,
OGRGeometry xpoSpatialFilter,
const char xpszDialect);

The pszDialect argument is in theory intended to allow for support of different command languages against
a provider, but for now applications should always pass an empty (not NULL) string to get the default
dialect.

The poSpatialFilter argument is a geometry used to select a bounding rectangle for features to be returned
in a manner similar to the OGRLayer::SetSpatialFilter() (p. ??) method. It may be NULL for no special
spatial restriction.

The result of an ExecuteSQL() call is usually a temporary OGRLayer (p. ??) representing the results set
from the statement. This is the case for a SELECT statement for instance. The returned temporary layer
should be released with OGRDataSource::ReleaseResultsSet() method when no longer needed. Failure to
release it before the datasource is destroyed may result in a crash.

5.8 Non-OGR SQL

All OGR drivers for database systems: My SQL, PostgreSQL and PostGIS (PG), Oracle (OCI), SQLite,
ODBC, ESRI Personal Geodatabase (PGeo) and MS SQL Spatial (MSSQLSpatial), override the OGR-
DataSource::ExecuteSQL() (p. ??) function with dedicated implementation and, by default, pass the SQL
statements directly to the underlying RDBMS. In these cases the SQL syntax varies in some particulars
from OGR SQL. Also, anything possible in SQL can then be accomplished for these particular databases.
Only the result of SQL. WHERE statements will be returned as layers.

Chapter 6

OGR Projections Tutorial

42 OGR Projections Tutorial

6.1 Introduction

The OGRSpatialReference (p. ??), and OGRCoordinateTransformation (p. ??) classes provide services
to represent coordinate systems (projections and datums) and to transform between them. These services
are loosely modelled on the OpenGIS Coordinate Transformations specification, and use the same Well
Known Text format for describing coordinate systems.

Some background on OpenGIS coordinate systems and services can be found in the Simple Features for
COM, and Spatial Reference Systems Abstract Model documents available from the Open Geospatial
Consortium. The GeoTIFF Projections Transform List may also be of assistance in un-
derstanding formulations of projections in WKT. The EPSG Geodesy web page is also a useful resource.

6.2 Defining a Geographic Coordinate System

Coordinate systems are encapsulated in the OGRSpatialReference (p. ??) class. There are a number of
ways of initializing an OGRSpatialReference (p. ??) object to a valid coordinate system. There are two
primary kinds of coordinate systems. The first is geographic (positions are measured in long/lat) and the
second is projected (such as UTM - positions are measured in meters or feet).

A Geographic coordinate system contains information on the datum (which implies an spheroid described
by a semi-major axis, and inverse flattening), prime meridian(normally Greenwich), and an angular units
type which is normally degrees. The following code initializes a geographic coordinate system on supply-
ing all this information along with a user visible name for the geographic coordinate system.

OGRSpatialReference oSRS;

0SRS.SetGeogCS ("My geographic coordinate system",
"WGS_1984",
"My WGS84 Spheroid",
SRS_WGS84_SEMIMAJOR, SRS_WGS84_INVFLATTENING,
"Greenwich", 0.0,
"degree", SRS_UA_DEGREE_CONV) ;

Of these values, the names "My geographic coordinate system", "My WGS84 Spheroid", "Greenwich" and
"degree" are not keys, but are used for display to the user. However, the datum name "WGS_1984" is used
as a key to identify the datum, and there are rules on what values can be used. NOTE: Prepare writeup
somewhere on valid datums!

The OGRSpatialReference (p. ??) has built in support for a few well known coordinate systems, which
include "NAD27", "NADS83", "WGS72" and "WGS84" which can be defined in a single call to SetWell-
KnownGeogCS().

0SRS.SetWellKnownGeogCS ("WGS84");

Furthermore, any geographic coordinate system in the EPSG database can be set by it’s GCS code number
if the EPSG database is available.

0SRS.SetWellKnownGeogCS ("EPSG:4326");

For serializization, and transmission of projection definitions to other packages, the OpenGIS Well Known
Text format for coordinate systems is used. An OGRSpatialReference (p. ??) can be initialized from well
known text, or converted back into well known text.

char *pszWKT = NULL;

6.3 Defining a Projected Coordinate System 43

0SRS.SetWellKnownGeogCS ("WGS84");
oSRS.exportToWkt (&pszWKT) ;
printf("$s\n", pszWKT);

gives something like:

GEOGCS ["WGS 84",DATUM["WGS_1984", SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG",7030]], TOWGs84[0,0,0,0,0,0,0],AUTHORITY["EPSG",6326]],
PRIMEM["Greenwich", 0, AUTHORITY ["EPSG",8901]],UNIT["DMSH",0.0174532925199433,
AUTHORITY["EPSG",9108]],AXIS["Lat",NORTH],AXIS["Long",EAST], AUTHORITY ["EPSG",
432611

or in more readable form:

GEOGCS ["WGS 84",
DATUM["WGS_1984",
SPHEROID["WGS 84", 6378137,298.257223563,
AUTHORITY["EPSG", 703011,

TOWGS84([0,0,0,0,0,0,01,

AUTHORITY ["EPSG", 6326]],
PRIMEM["Greenwich", 0, AUTHORITY ["EPSG", 8901]],
UNIT["DMSH",0.0174532925199433, AUTHORITY ["EPSG", 9108]],
AXIS["Lat",NORTH],

AXIS["Long",EAST],
AUTHORITY ["EPSG", 4326]]

The OGRSpatialReference::importFromWkt() (p. ??) method can be used to set an OGRSpatialRefer-
ence (p. ??) from a WKT coordinate system definition.

6.3 Defining a Projected Coordinate System

A projected coordinate system (such as UTM, Lambert Conformal Conic, etc) requires and underlying
geographic coordinate system as well as a definition for the projection transform used to translate between
linear positions (in meters or feet) and angular long/lat positions. The following code defines a UTM zone
17 projected coordinate system with and underlying geographic coordinate system (datum) of WGS84.

OGRSpatialReference oSRS;

OoSRS.SetProjCS("UTM 17 (WGS84) in northern hemisphere.");
0oSRS.SetWellKnownGeogCS ("WGS84");
oSRS.SetUTM(17, TRUE);

Calling SetProjCS() sets a user name for the projected coordinate system and establishes that the system
is projected. The SetWellKnownGeogCS() associates a geographic coordinate system, and the SetUTM()
call sets detailed projection transformation parameters. At this time the above order is important in order
to create a valid definition, but in the future the object will automatically reorder the internal representation
as needed to remain valid. For now be careful of the order of steps defining an OGRSpatialReference!

The above definition would give a WKT version that looks something like the following. Note that the
UTM 17 was expanded into the details transverse mercator definition of the UTM zone.

PROJCS["UTM 17 (WGS84) in northern hemisphere.",
GEOGCS["WGS 84",

44 OGR Projections Tutorial

DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY ["EPSG", 703011,

TOWGS84(0,0,0,0,0,0,07,

AUTHORITY["EPSG", 6326]1,
PRIMEM["Greenwich", 0, AUTHORITY ["EPSG", 890117,
UNIT["DMSH",0.0174532925199433, AUTHORITY ["EPSG",9108]],
AXIS["Lat",NORTH],

AXIS["Long",EAST],

AUTHORITY ["EPSG",4326]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin", 0],
PARAMETER["central_meridian",-81],
PARAMETER["scale_factor",0.99967,
PARAMETER["false_easting", 5000007,
PARAMETER["false_northing",0]]

There are methods for many projection methods including SetTM() (Transverse Mercator), SetLCC()
(Lambert Conformal Conic), and SetMercator().

6.4 Querying Coordinate System

Once an OGRSpatialReference (p. ??) has been established, various information about it can be queried.
It can be established if it is a projected or geographic coordinate system using the OGRSpatial-
Reference::IsProjected() (p.??) and OGRSpatialReference::IsGeographic() (p.??) methods. The
OGRSpatialReference::GetSemiMajor() (p. ??), OGRSpatialReference::GetSemiMinor() (p. ??) and
OGRSpatialReference::GetInvFlattening() (p.??) methods can be used to get information about the
spheroid. The OGRSpatialReference::GetAttrValue() (p.??) method can be used to get the PRO-
JCS, GEOGCS, DATUM, SPHEROID, and PROJECTION names strings. The OGRSpatialRefer-
ence::GetProjParm() (p.??) method can be used to get the projection parameters. The OGRSpatial-
Reference::GetLinearUnits() (p. ??) method can be used to fetch the linear units type, and translation to
meters.

The following code (from ogr_srs_proj4.cpp) demonstrates use of GetAttrValue() to get the projection, and
GetProjParm() to get projection parameters. The GetAttrValue() method searches for the first "value" node
associated with the named entry in the WKT text representation. The define’ed constants for projection
parameters (such as SRS_PP_CENTRAL_MERIDIAN) should be used when fetching projection parame-
ter with GetProjParm(). The code for the Set methods of the various projections in ogrspatialreference.cpp
can be consulted to find which parameters apply to which projections.

const char xpszProjection = poSRS->GetAttrValue ("PROJECTION") ;

if(pszProjection == NULL)
{
if (poSRS->IsGeographic())
sprintf (szProj4+strlen(szProj4), "+proj=longlat ");
else
sprintf (szProjd4+strlen(szProj4), "unknown ");
}
else if(EQUAL (pszProjection, SRS_PT_CYLINDRICAL_EQUAL_AREA))
{
sprintf (szProjd+strlen(szProj4),

"+proj=cea +lon_0=%.9f +lat_ts=%.9f +x_0=%.3f +y_0=%.3f ",
PoSRS->GetProjParm (SRS_PP_CENTRAL_MERIDIAN,0.0),
PoSRS->GetProjParm (SRS_PP_STANDARD_PARALLEL_1,0.0),
POoSRS->GetProjParm (SRS_PP_FALSE_EASTING,0.0),
PoSRS->GetProjParm (SRS_PP_FALSE_NORTHING,0.0));

6.5 Coordinate Transformation 45

6.5 Coordinate Transformation

The OGRCoordinateTransformation (p. ??) class is used for translating positions between different coor-
dinate systems. New transformation objects are created using OGRCreateCoordinateTransformation()
(p- ??), and then the OGRCoordinateTransformation::Transform() (p. ??) method can be used to con-
vert points between coordinate systems.

OGRSpatialReference oSourceSRS, oTargetSRS;
OGRCoordinateTransformation #*poCT;
double Xy Yi

oSourceSRS.importFromEPSG(atoi (papszArgv[i+l]));
oTargetSRS.importFromEPSG(atoi (papszArgv[i+2]));

poCT = OGRCreateCoordinateTransformation(&oSourceSRS,

&oTargetSRS) ;
x = atof (papszArgv[i+3]);
y = atof (papszArgv[i+4]);
if(poCT == NULL || !poCT->Transform(1, &x, &y))
printf("Transformation failed.\n");
else
printf ("(%£f,%f) -> (%f,%f)\n",

atof (papszArgv[i+3]),
atof (papszArgv([it+4]),
X, ¥)i

There are a couple of points at which transformations can fail. First, OGRCreateCoordinateTransfor-
mation() (p.??) may fail, generally because the internals recognise that no transformation between the
indicated systems can be established. This might be due to use of a projection not supported by the internal
PROJ 4 library, differing datums for which no relationship is known, or one of the coordinate systems being
inadequately defined. If OGRCreateCoordinateTransformation() (p. ??) fails it will return a NULL.

The OGRCoordinateTransformation::Transform() (p. ??) method itself can also fail. This may be as a
delayed result of one of the above problems, or as a result of an operation being numerically undefined for
one or more of the passed in points. The Transform() function will return TRUE on success, or FALSE if
any of the points fail to transform. The point array is left in an indeterminate state on error.

Though not shown above, the coordinate transformation service can take 3D points, and will adjust eleva-
tions for elevation differents in spheroids, and datums. At some point in the future shifts between different
vertical datums may also be applied. If no Z is passed, it is assume that the point is on the geoide.

The following example shows how to conveniently create a lat/long coordinate system using the same geo-
graphic coordinate system as a projected coordinate system, and using that to transform between projected
coordinates and lat/long.

OGRSpatialReference oUTM, =xpoLatLong;
OGRCoordinateTransformation xpoTransform;

oUTM.SetProjCS("UTM 17 / WGS84");
oUTM. SetWellKnownGeogCS ("WGS84");
oUTM. SetUTM(17);

polLatLong = oUTM.CloneGeogCS();

poTransform

OGRCreateCoordinateTransformation(&oUTM, poLatLong);

46 OGR Projections Tutorial

if(poTransform == NULL)
{

if(!'poTransform->Transform(nPoints, x, y, z))

6.6 Alternate Interfaces

A Cinterface to the coordinate system services is defined in ogr_srs_api.h (p. ??), and Python bindings are
available via the osr.py module. Methods are close analogs of the C++ methods but C and Python bindings
are missing for some C++ methods.

C Bindings

typedef void xOGRSpatialReferenceH;
typedef void xOGRCoordinateTransformationH;

OGRSpatialReferenceH OSRNewSpatialReference(const char *);

void OSRDestroySpatialReference (OGRSpatialReferenceH);
int OSRReference (OGRSpatialReferenceH);
int OSRDereference (OGRSpatialReferenceH);

OGRErr OSRImportFromEPSG(OGRSpatialReferenceH, int);
OGRErr OSRImportFromWkt (OGRSpatialReferenceH, char xx);
OGRErr OSRExportToWkt (OGRSpatialReferenceH, char *x);

OGRErr OSRSetAttrValue(OGRSpatialReferenceH hSRS, const char * pszNodePath,
const char x pszNewNodeValue);
const char »OSRGetAttrValue(OGRSpatialReferenceH hSRS,
const char * pszName, int iChild);

OGRErr OSRSetLinearUnits(OGRSpatialReferenceH, const char x, double);
double OSRGetLinearUnits(OGRSpatialReferenceH, char xx);

int OSRIsGeographic(OGRSpatialReferenceH);

int OSRIsProjected(OGRSpatialReferenceH);

int OSRIsSameGeogCS (OGRSpatialReferenceH, OGRSpatialReferenceH);
int OSRIsSame (OGRSpatialReferenceH, OGRSpatialReferenceH);

OGRErr OSRSetProjCS(OGRSpatialReferenceH hSRS, const char x pszName);
OGRErr OSRSetWellKnownGeogCS (OGRSpatialReferenceH hSRS,
const char * pszName);

OGRErr OSRSetGeogCS(OGRSpatialReferenceH hSRS,
const char x pszGeogName,
const char x pszDatumName,
const char » pszEllipsoidName,
double dfSemiMajor, double dfInvFlattening,
const char x pszPMName ,
double dfPMOffset ,
const char » pszUnits,
double dfConvertToRadians);

double OSRGetSemiMajor (OGRSpatialReferenceH, OGRErr x);
double OSRGetSemiMinor (OGRSpatialReferenceH, OGRErr x);
double OSRGetInvFlattening(OGRSpatialReferenceH, OGRErr x);

6.7 Internal Implementation

47

OGRErr OSRSetAuthority(OGRSpatialReferenceH hSRS,
const char x pszTargetKey,
const char x pszAuthority,
int nCode);
OGRErr OSRSetProjParm(OGRSpatialReferenceH, const char %, double);
double OSRGetProjParm(OGRSpatialReferenceH hSRS,
const char x pszParmName,
double dfDefault,
OGRErr *);

OGRErr OSRSetUTM(OGRSpatialReferenceH hSRS, int nZone, int bNorth);
int OSRGetUTMZone (OGRSpatialReferenceH hSRS, int xpbNorth);

OGRCoordinateTransformationH

OCTNewCoordinateTransformation(OGRSpatialReferenceH hSourceSRS,
OGRSpatialReferenceH hTargetSRS);

void OCTDestroyCoordinateTransformation(OGRCoordinateTransformationH);

int OCTTransform(OGRCoordinateTransformationH hCT,
int nCount, double *x, double *y, double *z);

Python Bindings

class osr.SpatialReference
def __init__ (self,obj=None) :
def ImportFromWkt (self, wkt):
def ExportToWkt (self):
def ImportFromEPSG(self,code):
def IsGeographic (self):
def IsProjected(self):
def GetAttrValue(self, name, child = 0):
def SetAttrValue(self, name, value):
def SetWellKnownGeogCS (self, name):
def SetProjCS(self, name = "unnamed"):
def IsSameGeogCS(self, other):
def IsSame (self, other):
def SetLinearUnits(self, units_name, to_meters):
def SetUTM(self, zone, is_north = 1):

class CoordinateTransformation:
def __init__ (self,source,target):
def TransformPoint (self, x, y, z = 0):
def TransformPoints (self, points):

6.7 Internal Implementation

The OGRCoordinateTransformation (p. ??) service is implemented on top of the PROJ . 4 library origi-

nally written by Gerald Evenden of the USGS.

48

OGR Projections Tutorial

Chapter 7

Deprecated List

50 Deprecated List

Member OGR_G_GetArea (p.??)

Member OGR_G_GetBoundary (p. ??)

Member OGR_G_SymmetricDifference (p. ??)

Member OGRGeometry::getBoundary (p. ??)() const

Member OGRGeometry::SymmetricDifference (p. ??)(const OGRGeometry (p. ??) *) const

Member OGRLayer::GetInfo (p. ??)(const char x)

Member OGRSpatialReference::~OGRSpatialReference (p. ??)()

Chapter 8

Directory Hierarchy

8.1 Directories

This directory hierarchy is sorted roughly, but not completely, alphabetically:

ogrsf_frmts oL

GOMETIC . . o v v v e e e e e e e e e e e e e e e e e e
BEOJSOML & o v v vt e e e e e e e e e e e e e e
kml ..o

ES
??
??
??
??

52

Directory Hierarchy

Chapter 9

Class Index

9.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

_CPLHashSet s
CCPLLISt . . . o e
_CPLQuadTree e e e e e
_QuadTreeNode e e e e
_sPolyExtended L
CachedConnection i i e e e e e
CachedDirList e e e e
CachedFileProp
CachedRegion e
CPLErrorContext e e e e e e e e
CPLHTTPResult e e e e e e e
CPLKeywordParser
CPLLocaleC e e e e e
CPLMimePart e
CPLMutexHolder e e e e
CPLODBCDriverlnstaller e e
CPLODBCSESSION e e e e e e e e e e
CPLODBCStatement e e e e e e e
CPLRectODb] o e e e e e
CPLSharedFilelnfo e
CPLSharedFileInfoExtra e e e
CPLStdCallThreadInfo e
CPLString o o
CPLStringLiist e
CPLXMLNoOde e e e e e e e
Ctb . e e e e e
curfile_info L e
DefaultCSVFileNameTLS e
errHandler e e e e
file_in_zip_read_info_s
FindFileTLS e e e e
GZipSnapshot
linkedlist_data_s e e

??
7
??
7
??
7
??
7
??
7
??
7
??
7
??
7
2?
7
??
7
??
7
??
7
??
7
??
7
??
7
??
”
??

54

Class Index

linkedlist_datablock_internal_s
OGR_SRSNode e e
ogr_style_param L e e e e e
ogr_style_value L e e
OGRAttrIndex e e e e

OGRMIAttrIndex e e e e
OGRCoordinateTransformation i i e e
OGRProjd4CT o

OGRDataSource o e e
OGREnvelope e

OGREnvelope3D e e

OGRFeature

OGRFeatureDefn e
OGRFeatureQuery e e e

OGRField .

OGRFieldDefn
OGRGEOMEIIY o o e e e e e e e e e e e e
OGRCUIve e
OGRLIneString e
OGRLinearRing
OGRGeometryCollection e
OGRMultiLineString e
OGRMultiPoint
OGRMultiPolygon e
OGRPoInt
OGRSurface e
OGRPolygon e
OGRGeometryFactory e e e e e e e

OGRLayer .

OGRGenSQLResultsLayer e
OGRLayerAttrindex o e e e
OGRMILayerAttrIndex 0 e

OGRProjd4Datum e e e e e e e e
OGRProjdPM o e e e
OGRRawPoint e e
OGRSFEDriver o e e e e
OGRSFDriverRegistrar e e
OGRSpatialReference e
OGRStyleMgr o
OGRStyleTable e e e e e e
OGRStyleTool e e e e e

OGRStyleBrush e
OGRStyleLabel e
OGRStylePen e
OGRStyleSymbol e

OZIDatums
ParseContext
PCIDatums
projUV . .
SFRegion .
StackContext

??
??
??
??
??
??
7”7
??
??
??
??
7
??
ES
??
2?
??
??
??
7
??
??
??
22
??
ES
Es
2?
??
43
2?
Es
??
??
??
??
22
43
??
??
??
??
Es
??
??
??
??
??
43
??
??

9.1 Class Hierarchy

55

swa_col_def e e
SWO_eXpr_node e e e e e e e
swqa_field_list L e
swqa_join_def L
SWQ_OP_TEZISIAr o o o e e e e e e
SWO_OPETALION . . . v v v v vt e
swag_order_def e e
SWQ_PArSe_CONLEXE v v v vt i e e e e e e e e e e e e
sw_select e e
SWO_SUMMALY . .« o o v v vt v v e e e et e e e e e e e e e e
swq_table_def L
TM_UNZ_S o e
M ZIP_S . . o o o o e e e
unz_file_info_internal s L e
unz_file_info s L e
unz_file_pos_S
unz_global_info_s L e e
UNZ_S & v v v e
VSIArchiveContent e e e e e e e
VSIArchiveEntry e
VSIArchiveEntryFileOffset

VSITarEntryFileOffset .
VSIZipEntryFileOffset .

VSIArchiveReader e

VSITarReader
VSIZipReader

VSICacheChunk e
VSIFileManager o o i e e e e e e e e e e
VSIFilesystemHandler L

VSIArchiveFilesystemHandler
VSITarFilesystemHandler
VSIZipFilesystemHandler

VSICurlFilesystemHandler e

VSIGZipFilesystemHandler

VSIMemFilesystemHandler

VSISparseFileFilesystemHandler

VSIStdinFilesystemHandler

VSIStdoutFilesystemHandler

VSIStdoutRedirectFilesystemHandler

VSISubFileFilesystemHandler

VSIUnixStdioFilesystemHandler

VSIMemFile e
VSIVirtualHandle e

VSIBufferedReaderHandle o

VSICachedFile
VSICurlHandle
VSIGZipHandle
VSIGZipWriteHandle . .
VSIMemHandle
VSISparseFileHandle . .
VSIStdinHandle
VSIStdoutHandle
VSIStdoutRedirectHandle

??
??
7
22
??
??
2?
??
??
??
??
??
??
??
Es
??
2?
??
??
22
??
??
ES
7
??
??
??
??
7”7
??
??
??
??
??
??
ES
??
2?
??
7
22
??
??
??
7
22
??
2?
??
??
??
??
??

56

Class Index

VSISubFileHandle e
VSIUnixStdioHandle e
VSIZipWriteHandle

WriteFuncStruct . .
yyalloc.
zip_fileinfo
zip_internal

zlib_filefunc_def_s

??
??
7
??
??
E
??
??

Chapter 10

Class Index

10.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

_CPLHashSet .
_CPLList
_CPLQuadTree
_QuadTreeNode
_sPolyExtended

CachedConnection e

CachedDirList .
CachedFileProp
CachedRegion .

CPLErrorContext e

CPLHTTPResult

CPLKeywordParser e

CPLLocaleC . .
CPLMimePart .
CPLMutexHolder

CPLODBCDriverInstaller
CPLODBCSession e e e
CPLODBCStatement e

CPLRectObj . .

CPLSharedFileInfo
CPLSharedFileInfoExtrao
CPLStdCallThreadInfo

CPLString (Conve

nient string class based on std::string) L

CPLStringList (String list class designed around our use of C "charsx*" string lists)

CPLXMLNode
ctb
curfile_info . . .

DefaultCSVFileNameTLS o

errHandler . . .

file_in_zip_read_info_s

FindFileTLS . .
GZipSnapshot .
linkedlist_data_s

??
7
??
7
??
7
2?
7
2?
7
2?
7
??
7
??
7
??
7
??
7
??
7
??
7
??
7
??
7
??
7
??
”
2?

58

Class Index

linkedlist_datablock _internal s

OGR_SRSNode

ogr_style_param

ogr_style_value
OGRAttrIndex

OGRCoordinateTransformation

OGRCurve . .

OGRDataSource e

OGREnvelope

OGREnvelope3D e e e

OGRPFeature .

OGRFeatureDefn e
OGRFeatureQuery e

OGRField . .
OGRFieldDefn

OGRGenSQLResultsLayer e

OGRGeometry

OGRGeometryCollection
OGRGeometryFactory

OGRLayer . .
OGRLayerAttrl

ndex e

OGRLinearRing e

OGRLineString

OGRMIAttrIndex e
OGRMILayerAttrIndex
OGRMultiLineString

OGRMultiPoint
OGRMultiPolyg
OGRPoint . .
OGRPolygon .
OGRProj4CT

(0)

OGRProjdDatum e e e e

OGRProj4PM
OGRRawPoint
OGRSFDriver

OGRSFDriverRegistrar
OGRSpatialReference

OGRStyleBrush
OGRStyleLabel
OGRStyleMgr
OGRStylePen

OGRStyleSymbol

OGRStyleTable
OGRStyleTool
OGRSurface .
OZIDatums .
ParseContext

PCIDatums .
projUV
SFRegion . . .
StackContext

swq_col_def .
swq_expr_node
swq_field_list

??
??
7
22
??
??
??
??
??
2?
??
??
??
??
Es
??
2?
??
7
22
??
2?
??
??
??
43
??
??
??
7
22
??
??
??
??
??
??
2?
??
??
??
43
??
??
??
7
22
??
2?
??
??
??
??
??

10.1 Class List

59

swq_join_def . . .
Sw(_op_registrar
swq_operation . .
swq_order_def . .
swq_parse_context
swq_select
Swq_summary . .
swq_table_def . .
tm unz_s
tm_zip_s

unz_file info_internal_s

unz_file_info_s . .
unz_file_pos_s . .
unz_global_info_s
unz_s
VSIArchiveContent
VSIArchiveEntry

VSIArchiveEntryFileOffset
VSIArchiveFilesystemHandler

VSIArchiveReader

VSIBufferedReaderHandle

VSICacheChunk
VSICachedFile .

VSICurlFilesystemHandler

VSICurlHandle .
VSIFileManager .

VSIFilesystemHandler
VSIGZipFilesystemHandler

VSIGZipHandle .

VSIGZipWriteHandle

VSIMemFile . . .

VSIMemFilesystemHandler,

VSIMemHandle .

VSISparseFileFilesystemHandler
VSISparseFileHandle
VSIStdinFilesystemHandler

VSIStdinHandle .

VSIStdoutFilesystemHandler

VSIStdoutHandle

VSIStdoutRedirectFilesystemHandler
VSIStdoutRedirectHandle
VSISubFileFilesystemHandler

VSISubFileHandle

VSITarEntryFileOffset
VSITarFilesystemHandler

VSITarReader . .

VSIUnixStdioFilesystemHandler
VSIUnixStdioHandle

VSIVirtualHandle

VSIZipEntryFileOffset
VSIZipFilesystemHandler

VSIZipReader . .

VSIZipWriteHandle

WriteFuncStruct

??
??
7
22
??
??
??
??
??
??
??
??
??
??
Es
??
??
??
7
22
??
2?
2?
??
??
43
??
??
??
7
22
??
2?
??
??
??
??
??
??
??
??
43
??
??
??
”?
22
??
??
2?
??
??
??
2?

60 Class Index
yyalloc e e e e 27
zip_fileinfo 27
zip_internal L 2?
zlib_filefunc def s 2?

Chapter 11

File Index

11.1 File List

Here is a list of all documented files with brief descriptions:

cpl_atomic_ops.h
cplconfigh
cpl_config_extras.h
cpl_conv.h e
cplesv.h . . e e
cplerrorh
cpl_hash_set.h
cplhttph
cplLlisth e
cplLminixmLh
cpl_minizip_ioapi.h
cpl_minizip_unzip.h
cpl_minizip_zip.h
cplmultiproc.h
cpl_odbc.h e
cplporth e
cpl_quad_treeh e
cplstring.h
cpl_timeh
cplvsih
cplvsi_virtualLh
cpl_win32ce_apih
cpl_winceh . . . L e
cplkeywordparserho
gdal_csv.h e e
ogr apih
ogr_attrind.h
ogr_coreh ... e
ogr_expath L e
ogr featureh
ogr_featurestyle.h
ogr gensql.h
ogr_geometryh

??
7
??
7
2?
7
2?
7
??
7
??
7
2?
7
??
7
??
7
2?
7
??
7
??
7
??
7
??
7
??
7
??
”
??

62 File Index
ogr_geos.h L e e 27
ogr_p.h . . 27
ogr_spatialref.h ??
ogr_srs_api.h 2?
ogr_srs_esri_nmames.h 27?
ogrgeomediageometry.h L L 2?
ogrpgeogeometry.h L 27
ogrsf frmts.h 2?
SWQ.h L e e e ??

Chapter 12

Directory Documentation

12.1 ogrsf_frmts/generic/ Directory Reference

Files

« file ogr_attrind.cpp

« file ogr_gensqgl.cpp

« file ogr_gensql.h

« file ogr_miattrind.cpp

« file ogrdatasource.cpp

« file ogrlayer.cpp

« file ogrregisterall.cpp

« file ogrsfdriver.cpp

« file ogrsfdriverregistrar.cpp

64 Directory Documentation

12.2 ogrsf_frmts/geojson/ Directory Reference

Files

* file ogrgeojsonwriter.cpp

12.3 ogrsf_frmts/kml/ Directory Reference

65

12.3 ogrsf_frmts/kml/ Directory Reference

Files

* file ogr2kmlgeometry.cpp

66 Directory Documentation

12.4 ogrsf_frmts/ Directory Reference

Directories

* directory generic
e directory geojson
¢ directory kml

Files

* file ogr_attrind.h
* file ogrsf_frmts.h

12.5 /var/lib/pgsql/rpm/BUILD/gdal-1.9.2-fedora/port/ Directory Reference 67

12.5 /var/lib/pgsql/rpm/BUILD/gdal-1.9.2-fedora/port/ Directory
Reference

Files

* file cpl_atomic_ops.cpp
« file cpl_atomic_ops.h

« file cpl_base64.cpp

* file cpl_config.h

* file cpl_config_extras.h
* file cpl_conv.cpp

« file cpl_conv.h

« file cpl_csv.cpp

* file cpl_csv.h

* file cpl_error.cpp

* file cpl_error.h

« file cpl_findfile.cpp

* file cpl_getexecpath.cpp
« file cpl_hash_set.cpp

* file cpl_hash_set.h

« file cpl_http.cpp

« file cpl_http.h

* file cpl_list.cpp

« file cpl_list.h

* file cpl_minixml.cpp

* file cpl_minixml.h

* file cpl_minizip_ioapi.cpp
* file cpl_minizip_ioapi.h
* file cpl_minizip_unzip.cpp
* file cpl_minizip_unzip.h
* file cpl_minizip_zip.cpp
* file cpl_minizip_zip.h

* file cpl_multiproc.cpp

* file cpl_multiproc.h

« file cpl_odbc.cpp

¢ file cpl_odbc.h

« file cpl_path.cpp

* file cpl_port.h

« file cpl_quad_tree.cpp

* file cpl_quad_tree.h

* file cpl_recode.cpp

« file cpl_recode_iconv.cpp
« file cpl_recode_stub.cpp
* file cpl_string.cpp

« file cpl_string.h

* file cpl_strtod.cpp

* file cpl_time.cpp

« file cpl_time.h

* file cpl_vsi.h

* file cpl_vsi_mem.cpp

68

Directory Documentation

file cpl_vsi_virtual.h

file cpl_vsil.cpp

file cpl_vsil_abstract_archive.cpp
file cpl_vsil_buffered_reader.cpp
file cpl_vsil_cache.cpp

file cpl_vsil_curl.cpp

file cpl_vsil_gzip.cpp

file cpl_vsil_simple.cpp

file cpl_vsil_sparsefile.cpp

file cpl_vsil_stdin.cpp

file cpl_vsil_stdout.cpp

file cpl_vsil_subfile.cpp

file cpl_vsil_tar.cpp

file cpl_vsil_unix_stdio_64.cpp
file cpl_vsil_win32.cpp

file cpl_vsisimple.cpp

file cpl_win32ce_api.cpp

file cpl_win32ce_api.h

file cpl_wince.h

file cplgetsymbol.cpp

file cplkeywordparser.cpp

file cplkeywordparser.h

file cplstring.cpp

file cplstringlist.cpp

file gdal_csv.h

file xmlreformat.cpp

Chapter 13

Class Documentation

13.1 _CPLHashSet Struct Reference

The documentation for this struct was generated from the following file:

* cpl_hash_set.cpp

70 Class Documentation

13.2 _CPLList Struct Reference

#include <cpl_list.h>

Public Attributes

* void * pData
* struct _CPLList x psNext

13.2.1 Detailed Description

List element structure.

13.2.2 Member Data Documentation
13.2.2.1 void+ _CPLList::pData

Pointer to the data object. Should be allocated and frred by the caller.

Referenced by CPLHashSetDestroy(), CPLHashSetForeach(), CPLHashSetRemove(), CPLListAppend(),
CPLListGetData(), and CPLListInsert().

13.2.2.2 struct _CPLListx _CPLList::psNext [read]

Pointer to the next element in list. NULL, if current element is the last one

Referenced by CPLHashSetDestroy(), CPLHashSetForeach(), CPLHashSetRemove(), CPLListAppend(),
CPLListCount(), CPLListDestroy(), CPLListGet(), CPLListGetLast(), CPLListGetNext(), CPLListIn-
sert(), and CPLListRemove().

The documentation for this struct was generated from the following file:

e cpl_list.h

13.3 _CPLQuadTree Struct Reference

71

13.3 _CPLQuadTree Struct Reference

The documentation for this struct was generated from the following file:

* cpl_quad_tree.cpp

72 Class Documentation

13.4 _QuadTreeNode Struct Reference

The documentation for this struct was generated from the following file:

* cpl_quad_tree.cpp

13.5 _sPolyExtended Struct Reference

73

13.5 _sPolyExtended Struct Reference

The documentation for this struct was generated from the following file:

* ogrgeometryfactory.cpp

74 Class Documentation

13.6 CachedConnection Struct Reference

The documentation for this struct was generated from the following file:

* cpl_vsil_curl.cpp

13.7 CachedDirList Struct Reference

75

13.7 CachedDirList Struct Reference

The documentation for this struct was generated from the following file:

* cpl_vsil_curl.cpp

76 Class Documentation

13.8 CachedFileProp Struct Reference

The documentation for this struct was generated from the following file:

* cpl_vsil_curl.cpp

13.9 CachedRegion Struct Reference

77

13.9 CachedRegion Struct Reference

The documentation for this struct was generated from the following file:

* cpl_vsil_curl.cpp

78 Class Documentation

13.10 CPLErrorContext Struct Reference

The documentation for this struct was generated from the following file:

* cpl_error.cpp

13.11 CPLHTTPResult Struct Reference 79

13.11 CPLHTTPResult Struct Reference

#include <cpl_http.h>

Public Attributes

* int nStatus

e char x pszContentType

* char * pszErrBuf

* int nDataLen

* GByte * pabyData

e char xx papszHeaders

¢ int nMimePartCount

¢ CPLMimePart « pasMimePart

13.11.1 Detailed Description

Describe the result of a CPLHTTPFetch() (p. ??) call

13.11.2 Member Data Documentation
13.11.2.1 int CPLHTTPResult::nDatal.en

Length of the pabyData buffer

Referenced by CPLHTTPFetch(), @ CPLHTTPParseMultipartMime(), and OGRSpatialRefer-
ence::importFromUrl().

13.11.2.2 int CPLHTTPResult::nMimePartCount

Number of parts in a multipart message

Referenced by CPLHTTPDestroyResult(), and CPLHTTPParseMultipartMime().

13.11.2.3 int CPLHTTPRaesult::nStatus

cURL error code : O=success, non-zero if request failed

Referenced by CPLHTTPFetch(), and OGRSpatialReference::importFromUrl().

13.11.2.4 GBytex CPLHTTPResult::pabyData

Buffer with downloaded data

Referenced by CPLHTTPDestroyResult(), CPLHTTPParseMultipartMime(), and OGRSpatialRefer-
ence::importFromUrl().

80 Class Documentation

13.11.2.5 charxx CPLHTTPResult::papszHeaders

Headers returned

Referenced by CPLHTTPDestroyResult(), and CPLHTTPFetch().

13.11.2.6 CPLMimePartx CPLHTTPResult::pasMimePart

Array of parts (resolved by CPLHTTPParseMultipartMime() (p. 2?))

Referenced by CPLHTTPDestroyResult(), and CPLHTTPParseMultipartMime().

13.11.2.7 charx CPLHTTPResult::pszContentType

Content-Type of the response

Referenced by CPLHTTPDestroyResult(), CPLHTTPFetch(), and CPLHTTPParseMultipartMime().
13.11.2.8 charx CPLHTTPResult::pszErrBuf

Error message from curl, or NULL

Referenced by CPLHTTPDestroyResult(), CPLHTTPFetch(), and OGRSpatialRefer-
ence::importFromUrl().

The documentation for this struct was generated from the following file:

e cpl_http.h

13.12 CPLKeywordParser Class Reference

81

13.12 CPLKeywordParser Class Reference

The documentation for this class was generated from the following files:

 cplkeywordparser.h
 cplkeywordparser.cpp

82 Class Documentation

13.13 CPLLocaleC Class Reference

The documentation for this class was generated from the following files:

e cpl_conv.h
* cpl_conv.cpp

13.14 CPLMimePart Struct Reference 83

13.14 CPLMimePart Struct Reference

#include <cpl_http.h>

Public Attributes

e char xx papszHeaders
* GByte * pabyData
* int nDataLen

13.14.1 Detailed Description

Describe a part of a multipart message

13.14.2 Member Data Documentation
13.14.2.1 int CPLMimePart::nDatal.en

Buffer length

Referenced by CPLHTTPParseMultipartMime().
13.14.2.2 GBytex CPLMimePart::pabyData
Buffer with data of the part

Referenced by CPLHTTPParseMultipartMime().
13.14.2.3 charxx CPLMimePart::papszHeaders

NULL terminated array of headers
Referenced by CPLHTTPDestroyResult(), and CPLHTTPParseMultipartMime().

The documentation for this struct was generated from the following file:

e cpl_http.h

84 Class Documentation

13.15 CPLMutexHolder Class Reference

The documentation for this class was generated from the following files:

 cpl_multiproc.h
* cpl_multiproc.cpp

13.16 CPLODBCDriverlInstaller Class Reference 85

13.16 CPLODBCDriverlInstaller Class Reference

#include <cpl_odbc.h>

Public Member Functions

 int InstallDriver (const char xpszDriver, const char xpszPathIn, WORD fRequest=ODBC_-
INSTALL_COMPLETE)

« int RemoveDriver (const char *pszDriverName, int fRemoveDSN=FALSE)

13.16.1 Detailed Description

A class providing functions to install or remove ODBC driver.

13.16.2 Member Function Documentation

13.16.2.1 int CPLODBCDriverInstaller::InstallDriver (const char * pszDriver, const char *
pszPathIn, WORD fRequest = ODBC_INSTALL_COMPLETE)

Installs ODBC driver or updates definition of already installed driver. Interanally, it calls ODBC’s SQLIn-
stallDriverEx function.

Parameters:

pszDriver - The driver definition as a list of keyword-value pairs describing the driver (See ODBC
API Reference).

pszPathlIn - Full path of the target directory of the installation, or a null pointer (for unixODBC,
NULL is passed).

JRequest - The fRequest argument must contain one of the following values: ODBC_INSTALL_-
COMPLETE - (default) complete the installation request ODBC_INSTALL_INQUIRY - inquire
about where a driver can be installed

Returns:

TRUE indicates success, FALSE if it fails.

13.16.2.2 int CPLODBCDriverlnstaller::RemoveDriver (const char x pszDriverName, int
JRemoveDSN = FALSE)

Removes or changes information about the driver from the Odbcinst.ini entry in the system information.

Parameters:

pszDriverName - The name of the driver as registered in the Odbcinst.ini key of the system informa-
tion.

JRemoveDSN - TRUE: Remove DSNs associated with the driver specified in lpszDriver. FALSE: Do
not remove DSNs associated with the driver specified in IpszDriver.

86 Class Documentation

Returns:

The function returns TRUE if it is successful, FALSE if it fails. If no entry exists in the system
information when this function is called, the function returns FALSE. In order to obtain usage count
value, call GetUsageCount().

The documentation for this class was generated from the following files:

e cpl_odbc.h
* cpl_odbc.cpp

13.17 CPLODBCSession Class Reference 87

13.17 CPLODBCSession Class Reference

#include <cpl_odbc.h>

Public Member Functions

« int EstablishSession (const char #pszDSN, const char xpszUserid, const char xpszPassword)
¢ const char * GetLastError ()

13.17.1 Detailed Description

A class representing an ODBC database session.

Includes error collection services.

13.17.2 Member Function Documentation

13.17.2.1 int CPLODBCSession::EstablishSession (const char * pszDSN, const char * pszUserid,
const char * pszPassword)

Connect to database and logon.

Parameters:

pszDSN The name of the DSN being used to connect. This is not optional.
pszUserid the userid to logon as, may be NULL if not not required, or provided by the DSN.
pszPassword the password to logon with. May be NULL if not required or provided by the DSN.

Returns:

TRUE on success or FALSE on failure. Call GetLastError() (p. ??) to get details on failure.

References GetLastError().

13.17.2.2 const char * CPLODBCSession::GetLastError ()
Returns the last ODBC error message.

Returns:

pointer to an internal buffer with the error message in it. Do not free or alter. Will be an empty (but
not NULL) string if there is no pending error info.

Referenced by EstablishSession(), and CPLODBCStatement::Fetch().

The documentation for this class was generated from the following files:

* cpl_odbc.h
* cpl_odbc.cpp

88 Class Documentation

13.18 CPLODBCStatement Class Reference

#include <cpl_odbc.h>

Public Member Functions

¢ void Clear ()

* void AppendEscaped (const char)

* void Append (const char)

* void Append (int)

* void Append (double)

* int Appendf (const char x,...) CPL_PRINT_FUNC_FORMAT(2
¢ int ExecuteSQL (const char x=NULL)

¢ int Fetch (int nOrientation=SQL_FETCH_NEXT, int nOffset=0)
¢ int GetColCount ()

« const char x GetColName (int)

¢ short GetColType (int)

* const char * GetColTypeName (int)

« short GetColSize (int)

¢ short GetColPrecision (int)

¢ short GetColNullable (int)

¢ int GetColld (const char x)

e const char *x GetColData (int, const char *=NULL)

¢ const char x GetColData (const char *, const char *x=NULL)

e int GetColumns (const char sxpszTable, const char xpszCatalog=NULL, const char
xpszSchema=NULL)

e int GetPrimaryKeys (const char xpszTable, const char xpszCatalog=NULL, const char
*pszSchema=NULL)

¢ int GetTables (const char xpszCatalog=NULL, const char *pszSchema=NULL)
* void DumpResult (FILE «fp, int bShowSchema=FALSE)

Static Public Member Functions

« static CPLString GetTypeName (int)
o static SQLSMALLINT GetTypeMapping (SQLSMALLINT)

13.18.1 Detailed Description

Abstraction for statement, and resultset.

Includes methods for executing an SQL statement, and for accessing the resultset from that statement.
Also provides for executing other ODBC requests that produce results sets such as SQLColumns() and
SQLTables() requests.

13.18 CPLODBCStatement Class Reference 89

13.18.2 Member Function Documentation
13.18.2.1 void CPLODBCStatement::Append (double dfValue)

Append to internal command.

The passed value is formatted and appended to the internal SQL command text.

Parameters:

dfValue value to append to the command.

References Append().

13.18.2.2 void CPLODBCStatement::Append (int nValue)

Append to internal command.

The passed value is formatted and appended to the internal SQL command text.

Parameters:

nValue value to append to the command.

References Append().

13.18.2.3 void CPLODBCStatement::Append (const char * pszText)

Append text to internal command.

The passed text is appended to the internal SQL command text.

Parameters:

pszText text to append.

Referenced by Append(), AppendEscaped(), Appendf(), and ExecuteSQL().

13.18.2.4 void CPLODBCStatement::AppendEscaped (const char * pszText)

Append text to internal command.

The passed text is appended to the internal SQL command text after escaping any special characters so it
can be used as a character string in an SQL statement.

Parameters:

pszText text to append.

References Append().

90 Class Documentation

13.18.2.5 int CPLODBCStatement::Appendf (const char x pszFormat, ...)

Append to internal command.

The passed format is used to format other arguments and the result is appended to the internal command
text. Long results may not be formatted properly, and should be appended with the direct Append() (p. ??)
methods.

Parameters:

pszFormat printf() style format string.

Returns:

FALSE if formatting fails dueto result being too large.

References Append().

13.18.2.6 void CPLODBCStatement::Clear ()

Clear internal command text and result set definitions.

Referenced by ExecuteSQL().

13.18.2.7 void CPLODBCStatement::DumpResult (FILE x fp, int bShowSchema = FALSE)

Dump resultset to file.

The contents of the current resultset are dumped in a simply formatted form to the provided file. If re-
quested, the schema definition will be written first.

Parameters:

Jp the file to write to. stdout or stderr are acceptable.

bShowSchema TRUE to force writing schema information for the rowset before the rowset data itself.
Default is FALSE.

References Fetch(), GetColCount(), GetColData(), GetColName(), GetColNullable(), GetColPrecision(),
GetColSize(), GetColType(), and GetTypeName().

13.18.2.8 int CPLODBCStatement::ExecuteSQL (const char * pszStatement = NULL)

Execute an SQL statement.

This method will execute the passed (or stored) SQL statement, and initialize information about the result-
set if there is one. If a NULL statement is passed, the internal stored statement that has been previously set
via Append() (p. ??) or Appendf() (p. ??) calls will be used.

Parameters:

pszStatement the SQL statement to execute, or NULL if the internally saved one should be used.

Returns:

TRUE on success or FALSE if there is an error. Error details can be fetched with OGRODBCSes-
sion::GetLastError().

References Append(), and Clear().

13.18 CPLODBCStatement Class Reference 91

13.18.2.9 int CPLODBCStatement::Fetch (int nOrientation = SQL_FETCH_NEXT, int nOffset = 0)

Fetch a new record.

Requests the next row in the current resultset using the SQLFetchScroll() call. Note that many ODBC
drivers only support the default forward fetching one record at a time. Only SQL_FETCH_NEXT (the
default) should be considered reliable on all drivers.

Currently it isn’t clear how to determine whether an error or a normal out of data condition has occured if
Fetch() (p. ??) fails.

Parameters:

nOrientation One of SQL_FETCH_NEXT, SQL_FETCH_LAST, SQL_FETCH_PRIOR, SQL_-
FETCH_ABSOLUTE, or SQL_FETCH_RELATIVE (default is SQL_FETCH_NEXT).

nOffset the offset (number of records), ignored for some orientations.

Returns:

TRUE if a new row is successfully fetched, or FALSE if not.

References CPLODBCSession::GetLastError(), and GetTypeMapping().
Referenced by DumpResult().

13.18.2.10 int CPLODBCStatement::GetColCount ()
Fetch the resultset column count.

Returns:

the column count, or zero if there is no resultset.

Referenced by DumpResult().

13.18.2.11 const char «+ CPLODBCStatement::GetColData (const char * pszColName, const char
* pszDefault = NULL)

Fetch column data.

Fetches the data contents of the requested column for the currently loaded row. The result is returned as a

string regardless of the column type. NULL is returned if an illegal column is given, or if the actual column

is "NULL".

Parameters:

pszColName the name of the column requested.

pszDefault the value to return if the column does not exist, or is NULL. Defaults to NULL.

Returns:

pointer to internal column data or NULL on failure.

References GetColData(), and GetColld().

92 Class Documentation

13.18.2.12 const char x CPLODBCStatement::GetColData (int iCol, const char * pszDefault =
NULL)

Fetch column data.

Fetches the data contents of the requested column for the currently loaded row. The result is returned as a
string regardless of the column type. NULL is returned if an illegal column is given, or if the actual column
is "NULL".

Parameters:

iCol the zero based column to fetch.

pszDefault the value to return if the column does not exist, or is NULL. Defaults to NULL.

Returns:

pointer to internal column data or NULL on failure.

Referenced by DumpResult(), and GetColData().

13.18.2.13 int CPLODBCStatement::GetColld (const char * pszColName)

Fetch column index.

Gets the column index corresponding with the passed name. The name comparisons are case insensitive.

Parameters:

pszColName the name to search for.

Returns:

the column index, or -1 if not found.

Referenced by GetColData().

13.18.2.14 const char x CPLODBCStatement::GetColName (int iCol)
Fetch a column name.

Parameters:

iCol the zero based column index.

Returns:

NULL on failure (out of bounds column), or a pointer to an internal copy of the column name.

Referenced by DumpResult().

13.18.2.15 short CPLODBCStatement::GetColNullable (int iCol)

Fetch the column nullability.

13.18 CPLODBCStatement Class Reference 93

Parameters:

iCol the zero based column index.

Returns:

TRUE if the column may contains or FALSE otherwise.

Referenced by DumpResult().

13.18.2.16 short CPLODBCStatement::GetColPrecision (int iCol)
Fetch the column precision.

Parameters:

iCol the zero based column index.
Returns:

column precision, may be zero or the same as column size for columns to which it does not apply.

Referenced by DumpResult().

13.18.2.17 short CPLODBCStatement::GetColSize (int iCol)

Fetch the column width.

Parameters:

iCol the zero based column index.
Returns:

column width, zero for unknown width columns.

Referenced by DumpResult().

13.18.2.18 short CPLODBCStatement::GetColType (int iCol)

Fetch a column data type.

The return type code is a an ODBC SQL_ code, one of SQL_UNKNOWN_TYPE, SQL_CHAR, SQL_-
NUMERIC, SQL_DECIMAL, SQL_INTEGER, SQL_SMALLINT, SQL_FLOAT, SQL_REAL, SQL_-
DOUBLE, SQL_DATETIME, SQL_VARCHAR, SQL_TYPE_DATE, SQL_TYPE_TIME, SQL_TYPE_-
TIMESTAMPT.

Parameters:

iCol the zero based column index.

Returns:

type code or -1 if the column is illegal.

Referenced by DumpResult().

94 Class Documentation

13.18.2.19 const char * CPLODBCStatement::GetColTypeName (int iCol)

Fetch a column data type name.

Returns data source-dependent data type name; for example, "CHAR", "VARCHAR", "MONEY", "LONG
VARBINAR", or "CHAR () FOR BIT DATA".

Parameters:

iCol the zero based column index.

Returns:

NULL on failure (out of bounds column), or a pointer to an internal copy of the column dat type name.

13.18.2.20 int CPLODBCStatement::GetColumns (const char * pszTable, const char * pszCatalog
= NULL, const char * pszSchema = NULL)

Fetch column definitions for a table.

The SQLColumn() method is used to fetch the definitions for the columns of a table (or other queriable
object such as a view). The column definitions are digested and used to populate the CPLODBCStatement
(p. ??) column definitions essentially as if a "SELECT * FROM tablename" had been done; however, no
resultset will be available.

Parameters:

pszTable the name of the table to query information on. This should not be empty.
pszCatalog the catalog to find the table in, use NULL (the default) if no catalog is available.
pszSchema the schema to find the table in, use NULL (the default) if no schema is available.

Returns:

TRUE on success or FALSE on failure.

13.18.2.21 int CPLODBCStatement::GetPrimaryKeys (const char * pszTable, const char x
pszCatalog = NULL, const char x pszSchema = NULL)

Fetch primary keys for a table.

The SQLPrimaryKeys() function is used to fetch a list of fields forming the primary key. The result is
returned as a result set matching the SQLPrimaryKeys() function result set. The 4th column in the result
set is the column name of the key, and if the result set contains only one record then that single field will
be the complete primary key.

Parameters:

pszlable the name of the table to query information on. This should not be empty.
pszCatalog the catalog to find the table in, use NULL (the default) if no catalog is available.
pszSchema the schema to find the table in, use NULL (the default) if no schema is available.

Returns:

TRUE on success or FALSE on failure.

13.18 CPLODBCStatement Class Reference 95

13.18.2.22 int CPLODBCStatement::GetTables (const char * pszCatalog = NULL, const char x
pszSchema = NULL)
Fetch tables in database.

The SQLTables() function is used to fetch a list tables in the database. The result is returned as a result
set matching the SQLTables() function result set. The 3rd column in the result set is the table name. Only
tables of type "TABLE" are returned.

Parameters:
pszCatalog the catalog to find the table in, use NULL (the default) if no catalog is available.
pszSchema the schema to find the table in, use NULL (the default) if no schema is available.
Returns:

TRUE on success or FALSE on failure.

13.18.2.23 SQLSMALLINT CPLODBCStatement::GetTypeMapping (SQLSMALLINT
nTypeCode) [static]
Get appropriate C data type for SQL column type.

Returns a C data type code, corresponding to the indicated SQL data type code (as returned from CPLOD-
BCStatement::GetColType() (p. ??)).

Parameters:

nTypeCode the SQL_ code, such as SQL._CHAR.

Returns:

data type code. The valid code is always returned. If SQL code is not recognised, SQL_C_BINARY
will be returned.

Referenced by Fetch().

13.18.2.24 CPLString CPLODBCStatement::GetTypeName (int nTypeCode) [static]

Get name for SQL column type.

Returns a string name for the indicated type code (as returned from CPLODBCStatement::GetColType()
(p-?27).

Parameters:

nTypeCode the SQL_ code, such as SQL_CHAR.
Returns:

internal string, "UNKNOWN" if code not recognised.

Referenced by DumpResult().

The documentation for this class was generated from the following files:

e cpl_odbc.h
* cpl_odbc.cpp

96 Class Documentation

13.19 CPLRectODbj Struct Reference

The documentation for this struct was generated from the following file:

e cpl_quad_tree.h

13.20 CPLSharedFileInfo Struct Reference

97

13.20 CPLSharedFileIlnfo Struct Reference

The documentation for this struct was generated from the following file:

e cpl_conv.h

98 Class Documentation

13.21 CPLSharedFileInfoExtra Struct Reference

The documentation for this struct was generated from the following file:

* cpl_conv.cpp

13.22 CPLStdCallThreadInfo Struct Reference

929

13.22 CPLStdCallThreadInfo Struct Reference

The documentation for this struct was generated from the following file:

 cpl_multiproc.cpp

100 Class Documentation

13.23 CPLString Class Reference

Convenient string class based on std::string.

#include <cpl_string.h>

Public Member Functions

* CPLString & FormatC (double dfValue, const char xpszFormat=0)
¢ CPLString & Trim ()

* size_t ifind (const std::string &str, size_t pos=0) const

* size_t ifind (const char xs, size_t pos=0) const

¢ CPLString & toupper (void)

¢ CPLString & tolower (void)

13.23.1 Detailed Description

Convenient string class based on std::string.

13.23.2 Member Function Documentation
13.23.2.1 CPLString & CPLString::FormatC (double dfValue, const char x pszFormat = 0)

Format double in C locale.

The passed value is formatted using the C locale (period as decimal seperator) and appended to the target
CPLString (p. 2?).

Parameters:

dfValue the value to format.

pszFormat the sprintf() style format to use or omit for default. Note that this format string should only
include one substitution argument and it must be for a double (f or g).

Returns:

a reference to the CPLString (p. ??).

13.23.2.2 size_t CPLString::ifind (const char * s, size_t nPos = 0) const
Case insensitive find() alternative.

Parameters:

s substring to find.

nPos offset in the string at which the search starts.

Returns:

the position of the substring in the string or std::string::npos if not found.

13.23 CPLString Class Reference 101

Since:

GDAL 1.9.0

References tolower().

13.23.2.3 size_t CPLString::ifind (const std::string & str, size_t pos = 0) const
Case insensitive find() alternative.

Parameters:

str substring to find.

pos offset in the string at which the search starts.

Returns:

the position of substring in the string or std::string::npos if not found.

Since:

GDAL 1.9.0

Referenced by CPLURLAddKVP(), and CPLURLGetValue().

13.23.2.4 CPLString & CPLString::tolower (void)

Convert to lower case in place.

Referenced by ifind().

13.23.2.5 CPLString & CPLString::toupper (void)

Convert to upper case in place.

13.23.2.6 CPLString & CPLString::Trim ()

Trim white space.
Trims white space off the let and right of the string. White space is any of a space, a tab, a newline (’

’) or a carriage control (7).

Returns:

a reference to the CPLString (p. ??).

The documentation for this class was generated from the following files:

* cpl_string.h
* cplstring.cpp

102 Class Documentation

13.24 CPLStringList Class Reference

String list class designed around our use of C "charxx" string lists.

#include <cpl_string.h>

Public Member Functions

¢ CPLStringList (char xxpapszList, int bTakeOwnership=1)
* CPLStringList (const CPLStringList &oOther)

Copy constructor.

¢ CPLStringList & Clear ()

¢ int Count () const

* CPLStringList & AddString (const char *xpszNewString)

* CPLStringList & AddStringDirectly (char xpszNewString)

* CPLStringList & InsertString (int nInsertAtLineNo, const char *xpszNewLine)

Insert into the list at identified location.

* CPLStringList & InsertStringDirectly (int nInsertAtLineNo, char xpszNewLine)
« int FindName (const char xpszName) const

* int FetchBoolean (const char xpszKey, int bDefault) const

* const char * FetchNameValue (const char *pszKey) const

* const char * FetchNameValueDef (const char xpszKey, const char spszDefault) const
¢ CPLStringList & AddNameValue (const char xpszKey, const char xpszValue)

* CPLStringList & SetNameValue (const char xpszKey, const char *pszValue)

¢ CPLStringList & Assign (char *xpapszList, int bTakeOwnership=1)

e char * operator[] (int i)

e char *x StealList ()

¢ CPLStringList & Sort ()

13.24.1 Detailed Description

String list class designed around our use of C "charxx" string lists.

13.24.2 Constructor & Destructor Documentation
13.24.2.1 CPLStringList::CPLStringList (char xx papszListIn, int bTakeOwnership = 1)

CPLStringList (p. ??) constructor.

Parameters:

papszListIn the NULL terminated list of strings to consume.

bTakeOwnership TRUE if the CPLStringList (p.??) should take ownership of the list of strings
which implies responsibility to free them.

References Assign().

13.24 CPLStringList Class Reference 103

13.24.3 Member Function Documentation

13.24.3.1 CPLStringList & CPLStringList::AddNameValue (const char * pszKey, const char *
pszValue)

A a name=value entry to the list.

A key=value string is prepared and appended to the list. There is no check for other values for the same
key in the list.

Parameters:

pszKey the key name to add.
pszValue the key value to add.

References AddStringDirectly(), and InsertStringDirectly().
Referenced by SetNameValue().
13.24.3.2 CPLStringList & CPLStringList::AddString (const char x pszNewString)

Add a string to the list.

A copy of the passed in string is made and inserted in the list.

Parameters:

pszNewString the string to add to the list.

References AddStringDirectly().
Referenced by CSLTokenizeString2().
13.24.3.3 CPLStringList & CPLStringList::AddStringDirectly (char * pszNewString)

Add a string to the list.

This method is similar to AddString() (p. ??), but ownership of the pszNewString is transferred to the
CPLStringList (p. ??) class.

Parameters:

pszNewString the string to add to the list.

References Count().

Referenced by AddNameValue(), and AddString().

13.24.3.4 CPLStringList & CPLStringList::Assign (char xx papszListIn, int bTakeOwnership = 1)
Assign a list of strings.

Parameters:

papszListIn the NULL terminated list of strings to consume.

104

Class Documentation

bTakeOwnership TRUE if the CPLStringList (p. ??) should take ownership of the list of strings

which implies responsibility to free them.

Returns:

a reference to the CPLStringList (p. ??) on which it was invoked.

References Clear().

Referenced by CPLStringList(), and CSLTokenizeString2().
13.24.3.5 CPLStringList & CPLStringList::Clear ()
Clear the string list.

Referenced by Assign().

13.24.3.6 int CPLStringList::Count () const

Returns:

count of strings in the list, zero if empty.

Referenced by AddStringDirectly(), CSLTokenizeString2(), InsertStringDirectly(), operator[](), Set-

NameValue(), and Sort().

13.24.3.7 int CPLStringList::FetchBoolean (const char * pszKey, int bDefault) const

Check for boolean key value.

In a CPLStringList (p. ??) of "Name=Value" pairs, look to see if there is a key with the given name, and if
it can be interpreted as being TRUE. If the key appears without any "=Value" portion it will be considered
true. If the value is NO, FALSE or 0 it will be considered FALSE otherwise if the key appears in the list it
will be considered TRUE. If the key doesn’t appear at all, the indicated default value will be returned.

Parameters:
pszKey the key value to look for (case insensitive).

bDefault the value to return if the key isn’t found at all.

Returns:

TRUE or FALSE

References FetchNameValue().

13.24.3.8 const char « CPLStringList::FetchNameValue (const char * pszName) const

Fetch value associated with this key name.

If this list sorted, a fast binary search is done, otherwise a linear scan is done. Name lookup is case

insensitive.

13.24 CPLStringList Class Reference 105

Parameters:

pszName the key name to search for.

Returns:

the corresponding value or NULL if not found. The returned string should not be modified and points
into internal object state that may change on future calls.

References FindName().

Referenced by FetchBoolean(), and FetchName ValueDef().

13.24.3.9 const char x+ CPLStringList::FetchNameValueDef (const char x pszName, const char x
pszDefault) const
Fetch value associated with this key name.

If this list sorted, a fast binary search is done, otherwise a linear scan is done. Name lookup is case
insensitive.

Parameters:

pszName the key name to search for.

pszDefault the default value returned if the named entry isn’t found.

Returns:

the corresponding value or the passed default if not found.

References FetchNameValue().

13.24.3.10 int CPLStringList::FindName (const char * pszKey) const

Get index of given name/value keyword.

Note that this search is for a line in the form name=value or name:value. Use FindString() or PartialFind-
String() for searches not based on name=value pairs.

Parameters:

pszKey the name to search for.

Returns:

the string list index of this name, or -1 on failure.

Referenced by FetchNameValue(), and SetNameValue().

13.24.3.11 CPLStringList + CPLStringList::InsertString (int nlnsertAtLineNo, const char x
pszNewlLine) [inline]

Insert into the list at identified location. This method will insert a string into the list at the identified
location. The insertion point must be within or at the end of the list. The following entries are pushed down
to make space.

106 Class Documentation

Parameters:

ninsertAtLineNo the line to insert at, zero to insert at front.

pszNewLine to the line to insert. This string will be copied.

13.24.3.12 CPLStringList & CPLStringList::InsertStringDirectly (int nInsertAtLineNo, char x
pszNewLine)

Insert into the list at identified location.

This method will insert a string into the list at the identified location. The insertion point must be within or

at the end of the list. The following entries are pushed down to make space.

Parameters:

nlnsertAtLineNo the line to insert at, zero to insert at front.

pszNewlLine to the line to insert, the ownership of this string will be taken over the by the object. It
must have been allocated on the heap.

References Count().

Referenced by AddNameValue().

13.24.3.13 char « CPLStringList::operator][] (int i)

nen

Fetch entry "i".

Fetches the requested item in the list. Note that the returned string remains owned by the CPLStringList
(p-??). If "i" is out of range NULL is returned.

Parameters:

i the index of the list item to return.
Returns:

selected entry in the list.

References Count().

13.24.3.14 CPLStringList & CPLStringList::SetNameValue (const char * pszKey, const char *
pszValue)

Set name=value entry in the list.

Similar to AddNameValue() (p. 2?), except if there is already a value for the key in the list it is replaced

instead of adding a new entry to the list. If pszValue is NULL any existing key entry is removed.

Parameters:

pszKey the key name to add.
pszValue the key value to add.

References AddNameValue(), Count(), and FindName().

13.24 CPLStringList Class Reference 107

13.24.3.15 CPLStringList & CPLStringList::Sort ()

Sort the entries in the list and mark list sorted.

Note that once put into "sorted" mode, the CPLStringList (p. ??) will attempt to keep things in sorted
order through calls to AddString() (p. ??), AddStringDirectly() (p. ??), AddNameValue() (p. ??), Set-
NameValue() (p. ??). Complete list assignments (via Assign() (p. ??) and operator= will clear the sorting
state. When in sorted order FindName() (p. ??), FetchNameValue() (p. ??) and FetchNameValueDef()
(p- ??) will do a binary search to find the key, substantially improve lookup performance in large lists.

References Count().

13.24.3.16 char xx CPLStringList::StealList ()

Seize ownership of underlying string array.

This method is simmilar to List(), except that the returned list is now owned by the caller and the
CPLStringList (p. ??) is emptied.

Returns:

the C style string list.

Referenced by CSLTokenizeString2().

The documentation for this class was generated from the following files:

¢ cpl_string.h
e cplstringlist.cpp

108 Class Documentation

13.25 CPLXMLNode Struct Reference

#include <cpl_minixml.h>

Public Attributes

CPLXMLNodeType eType
Node type.

e char x pszValue

Node value.

struct CPLXMLNode * psNext
Next sibling.

struct CPLXMLNode * psChild
Child node.

13.25.1 Detailed Description

Document node structure.

This C structure is used to hold a single text fragment representing a component of the document when
parsed. It should be allocated with the appropriate CPL function, and freed with CPLDestroyXMLNode()
(p-??). The structure contents should not normally be altered by application code, but may be freely
examined by application code.

Using the psChild and psNext pointers, a heirarchical tree structure for a document can be represented as a
tree of CPLXMLNode (p. ??) structures.

13.25.2 Member Data Documentation
13.25.2.1 CPLXMLNodeType CPLXMLNode::eType

Node type. One of CXT_Element, CXT_Text, CXT_Attribute, CXT_Comment, or CXT_Literal.

Referenced by CPLAddXMLChild(), CPLCloneXMLTree(), CPLCreateXMLNode(), CPLGetXMLN-
ode(), CPLGetXMLValue(), CPLSearchXMLNode(), CPLSetXMLValue(), and CPLStripXMLNames-

pace().

13.25.2.2 struct CPLXMLNodex CPLXMLNode::psChild [read]

Child node. Pointer to first child node, if any. Only CXT_Element and CXT_Attribute nodes should have
children. For CXT_Attribute it should be a single CXT_Text value node, while CXT_Element can have
any kind of child. The full list of children for a node are identified by walking the psNext’s starting with
the psChild node.

Referenced by CPLAddXMLChild(), CPLCloneXMLTree(), CPLCreateXMLNode(), CPLDe-
stroyXMLNode(), CPLGetXMLNode(), CPLGetXMLValue(), CPLRemoveXMLChild(),
CPLSearchXMLNode(), CPLSetXMLValue(), and CPLStripXMLNamespace().

13.25 CPLXMLNode Struct Reference 109

13.25.2.3 struct CPLXMLNodex CPLXMLNode::psNext [read]

Next sibling. Pointer to next sibling, that is the next node appearing after this one that has the same parent
as this node. NULL if this node is the last child of the parent element.

Referenced by CPLAddXMLChild(), CPLAddXMLSibling(), CPLCloneXMLTree(), CPLCreateXMLN-
ode(), CPLDestroyXMLNode(), CPLGetXMLNode(), CPLGetXMLValue(), CPLRemoveXMLChild(),
CPLSearchXMLNode(), CPLSerializeXMLTree(), CPLSetXMLValue(), CPLStripXMLNamespace(), and
OGRSpatialReference::importFromXML().

13.25.2.4 charx CPLXMLNode::pszValue

Node value. For CXT_Element this is the name of the element, without the angle brackets. Note there is
a single CXT_Element even when the document contains a start and end element tag. The node represents
the pair. All text or other elements between the start and end tag will appear as children nodes of this
CXT_Element node.

For CXT_Attribute the pszValue is the attribute name. The value of the attribute will be a CXT_Text child.

For CXT_Text this is the text itself (value of an attribute, or a text fragment between an element start and
end tags.

For CXT_Literal it is all the literal text. Currently this is just used for IDOCTYPE lines, and the value
would be the entire line.

For CXT_Comment the value is all the literal text within the comment, but not including the comment
start/end indicators ("<--"and "-->").

Referenced by CPLCloneXMLTree(), CPLCreateXMLNode(), CPLDestroyXMLNode(), CPLGetXMLN-
ode(), CPLGetXMLValue(), CPLParseXMLString(), CPLSearchXMLNode(), CPLSetXMLValue(),
CPLStripXMLNamespace(), and OGRSpatialReference::importFromXML().

The documentation for this struct was generated from the following file:

¢ cpl_minixml.h

110 Class Documentation

13.26 ctb Struct Reference

The documentation for this struct was generated from the following file:

e cpl_csv.cpp

13.27 curfile_info Struct Reference 111

13.27 curfile_info Struct Reference

The documentation for this struct was generated from the following file:

* cpl_minizip_zip.cpp

112 Class Documentation

13.28 DefaultCSVFileNameTLS Struct Reference

The documentation for this struct was generated from the following file:

e cpl_csv.cpp

13.29 errHandler Struct Reference 113

13.29 errHandler Struct Reference

The documentation for this struct was generated from the following file:

* cpl_error.cpp

114 Class Documentation

13.30 file_in_zip_read_info_s Struct Reference

The documentation for this struct was generated from the following file:

* cpl_minizip_unzip.cpp

13.31 FindFileTLS Struct Reference 115

13.31 FindFileTLS Struct Reference

The documentation for this struct was generated from the following file:

* cpl_findfile.cpp

116 Class Documentation

13.32 GZipSnapshot Struct Reference

The documentation for this struct was generated from the following file:

* cpl_vsil_gzip.cpp

13.33 linkedlist_data_s Struct Reference 117

13.33 linkedlist_data_s Struct Reference

The documentation for this struct was generated from the following file:

* cpl_minizip_zip.cpp

118 Class Documentation

13.34 linkedlist_datablock_internal s Struct Reference

The documentation for this struct was generated from the following file:

* cpl_minizip_zip.cpp

13.35 OGR_SRSNode Class Reference 119

13.35 OGR_SRSNode Class Reference

#include <ogr_spatialref.h>

Public Member Functions

¢ OGR_SRSNode (const char x=NULL)

¢ int GetChildCount () const

¢ OGR_SRSNode * GetChild (int)

¢ OGR_SRSNode * GetNode (const char x)
¢ void InsertChild (OGR_SRSNode x, int)
¢ void AddChild (OGR_SRSNode)

¢ int FindChild (const char) const

¢ void DestroyChild (int)

* void StripNodes (const char)

¢ const char * GetValue () const

¢ void SetValue (const char %)

¢ void MakeValueSafe ()

¢ OGR_SRSNode * Clone () const

¢ OGRErr importFromWKkt (char xx)

* OGRErr exportToWkt (char xx) const

* OGRErr applyRemapper (const char spszNode, char sxpapszSrcValues, char sxpapszDstValues,
int nStepSize=1, int bChildOfHit=FALSE)

13.35.1 Detailed Description

Objects of this class are used to represent value nodes in the parsed representation of the WKT SRS format.
For instance UNIT["METER",1] would be rendered into three OGR_SRSNodes. The root node would have
a value of UNIT, and two children, the first with a value of METER, and the second with a value of 1.

Normally application code just interacts with the OGRSpatialReference (p.??) object, which uses the
OGR_SRSNode (p. ??) to implement it’s data structure; however, this class is user accessable for detailed
access to components of an SRS definition.

13.35.2 Constructor & Destructor Documentation

13.35.2.1 OGR_SRSNode::OGR_SRSNode (const char * pszValueln = NULL)

Constructor.

Parameters:

pszValueln this optional parameter can be used to initialize the value of the node upon creation. If
omitted the node will be created with a value of "". Newly created OGR_SRSNodes have no
children.

Referenced by Clone(), and importFromWkt().

120 Class Documentation

13.35.3 Member Function Documentation
13.35.3.1 void OGR_SRSNode::AddChild (OGR_SRSNode * poNew)

Add passed node as a child of target node.

Note that ownership of the passed node is assumed by the node on which the method is invoked ... use the
Clone() (p. ??) method if the original is to be preserved. New children are always added at the end of the
list.

Parameters:

poNew the node to add as a child.

References InsertChild().

Referenced by Clone(), OGRSpatialReference::CloneGeogCS(), OGRSpatialRefer-
ence::importFromProj4(), OGRSpatialReference::importFromURN(), OGRSpatialRefer-
ence::importFromWkt(), importFromWkt(), OGRSpatialReference::morphFromESRI(), OGRSpa-
tialReference::morphToESRI(), OGRSpatialReference::SetAngularUnits(), OGRSpatialRefer-

ence::SetAuthority(), = OGRSpatialReference::SetAxes(), = OGRSpatialReference::SetCompoundCS(),
OGRSpatialReference::SetExtension(), OGRSpatialReference::SetFromUserInput(), OGRSpatial-
Reference::SetGeogCS(), = OGRSpatialReference::SetNode(), OGRSpatialReference::SetProjParm(),
OGRSpatialReference::SetTargetLinearUnits(), OGRSpatialReference::SetTOWGS84(), and OGRSpa-
tialReference::SetVertCS().

13.35.3.2 OGRErr OGR_SRSNode::applyRemapper (const char * pszNode, char sxx
papszSrcValues, char xx papszDstValues, int nStepSize = 1, int bChildOfHit = FALSE)

Remap node values matching list.

Remap the value of this node or any of it’s children if it matches one of the values in the source list to the
corresponding value from the destination list. If the pszNode value is set, only do so if the parent node
matches that value. Even if a replacement occurs, searching continues.

Parameters:

pszNode Restrict remapping to children of this type of node (eg. "PROJECTION")

papszSrcValues a NULL terminated array of source string. If the node value matches one of these
(case insensitive) then replacement occurs.

papszDstValues an array of destination strings. On a match, the one corresponding to a source value
will be used to replace a node.

nStepSize increment when stepping through source and destination arrays, allowing source and desti-
nation arrays to be one interleaved array for instances. Defaults to 1.

bChildOfHit Only TRUE if we the current node is the child of a match, and so needs to be set.
Application code would normally pass FALSE for this argument.

Returns:
returns OGRERR_NONE unless something bad happens. There is no indication returned about
whether any replacement occured.

References applyRemapper(), GetChild(), GetChildCount(), and SetValue().

Referenced by applyRemapper(), OGRSpatialReference::morphFromESRI(), and OGRSpatialRefer-
ence::morphToESRI().

13.35 OGR_SRSNode Class Reference 121

13.35.3.3 OGR_SRSNode x* OGR_SRSNode::Clone () const
Make a duplicate of this node, and it’s children.

Returns:

a new node tree, which becomes the responsiblity of the caller.

References AddChild(), and OGR_SRSNode().
Referenced by OGRSpatialReference::Clone(), OGRSpatialReference::CloneGeogCS(), OGRSpa-

tialReference::CopyGeogCSFrom(), OGRSpatialReference::importFromProj4(), OGRSpatial-
Reference::importFromURN(), OGRSpatialReference::morphFromESRI(), OGRSpatialRef-
erence::SetCompoundCS(), OGRSpatialReference::SetFromUserInput(), OGRSpatialRefer-

ence::SetGeocCS(), and OGRSpatialReference::Strip Vertical().

13.35.3.4 void OGR_SRSNode::DestroyChild (int iChild)

Remove a child node, and it’s subtree.

Note that removing a child node will result in children after it being renumbered down one.

Parameters:

iChild the index of the child.

Referenced by OGRSpatialReference::CopyGeogCSFrom(), OGRSpatialReference::importFromESRI(),
OGRSpatialReference::morphFromESRI(), OGRSpatialReference::morphToESRI(), OGRSpatial-
Reference::SetAuthority(), OGRSpatialReference::SetAxes(), OGRSpatialReference::SetGeogCS(),
OGRSpatialReference::SetStatePlane(), OGRSpatialReference::SetTargetLinearUnits(), OGRSpatialRef-
erence::SetTOWGS84(), and StripNodes().

13.35.3.5 OGRErr OGR_SRSNode::exportToWkt (char *x ppszResult) const

Convert this tree of nodes into WKT format.

Note that the returned WKT string should be freed with OGRFree() or CPLFree() when no longer needed.
It is the responsibility of the caller.

Parameters:

ppszResult the resulting string is returned in this pointer.

Returns:

currently OGRERR_NONE is always returned, but the future it is possible error conditions will de-
velop.

References exportToWkt().
Referenced by OGRSpatialReference::exportToWkt(), and exportToWkt().

13.35.3.6 int OGR_SRSNode::FindChild (const char * pszValue) const

Find the index of the child matching the given string.

122 Class Documentation

Note that the node value must match pszValue with the exception of case. The comparison is case insensi-
tive.

Parameters:

pszValue the node value being searched for.

Returns:

the child index, or -1 on failure.

Referenced by OGRSpatialReference::CopyGeogCSFrom(), OGRSpatialReference::Fixup(),
OGRSpatialReference::GetAuthorityCode(), OGRSpatialReference::GetAuthorityName(), OGRSpa-
tialReference::morphFromESRI(), OGRSpatialReference::SetAngularUnits(), OGRSpatialRefer-
ence::SetAuthority(), OGRSpatialReference::SetAxes(), OGRSpatialReference::SetGeogCS(), OGRSpa-
tialReference::SetStatePlane(), OGRSpatialReference::SetTargetLinearUnits(), OGRSpatialRefer-
ence::SetTOWGS84(), and StripNodes().

13.35.3.7 OGR_SRSNode x« OGR_SRSNode::GetChild (int iChild)

Fetch requested child.

Parameters:

iChild the index of the child to fetch, from 0 to GetChildCount() (p. 2?) - 1.

Returns:

a pointer to the child OGR_SRSNode (p. ??), or NULL if there is no such child.

Referenced by applyRemapper(), OGRSpatialReference::EPSGTreatsAsLatLong(), OGRSpatialRefer-
ence::exportToPCI(), OGRSpatialReference::exportToProj4(), OGRSpatialReference::FindProjParm(),
OGRSpatialReference::GetAngularUnits(), OGRSpatialReference::GetAttrValue(), OGRSpatial-
Reference::GetAuthorityCode(), OGRSpatialReference::GetAuthorityName(), OGRSpatialRefer-
ence::GetAxis(), OGRSpatialReference::GetExtension(), OGRSpatialReference::GetInvFlattening(),

OGRSpatialReference::GetPrimeMeridian(), OGRSpatialReference::GetProjParm(), OGRSpa-
tialReference::GetSemiMajor(), OGRSpatialReference::GetTargetLinearUnits(), OGRSpa-
tialReference::GetTOWGS84(), OGRSpatialReference::importFromProj4(), OGRSpatialRef-
erence::importFromURN(), OGRSpatialReference::IsSame(), MakeValueSafe(), OGRSpa-
tialReference::morphFromESRI(), OGRSpatialReference::morphToOESRI(), OGRSpatial-
Reference::SetAngularUnits(), OGRSpatialReference::SetExtension(), OGRSpatialRefer-
ence::SetFromUserInput(), OGRSpatialReference::SetLinearUnitsAndUpdateParameters(),
OGRSpatialReference::SetNode(), OGRSpatialReference::SetProjParm(), OGRSpatialRefer-

ence::SetTargetLinearUnits(), StripNodes(), and OGRSpatialReference::Strip Vertical().

13.35.3.8 int OGR_SRSNode::GetChildCount () const [inline]
Get number of children nodes.

Returns:

0 for leaf nodes, or the number of children nodes.

13.35 OGR_SRSNode Class Reference 123

Referenced by applyRemapper(), OGRSpatialReference::EPSGTreatsAsLatLong(), OGRSpatialRefer-
ence::exportToPCI(), OGRSpatialReference::exportToProj4(), OGRSpatialReference::FindProjParm(),
OGRSpatialReference::GetAngularUnits(), OGRSpatialReference::GetAttrValue(), OGRSpatial-
Reference::GetAuthorityCode(), OGRSpatialReference::GetAuthorityName(), OGRSpatialRefer-
ence::GetAxis(), OGRSpatialReference::GetExtension(), OGRSpatialReference::GetInvFlattening(),
OGRSpatialReference::GetPrimeMeridian(), OGRSpatialReference::GetSemiMajor(), OGRSpa-
tialReference::GetTargetLinearUnits(), = OGRSpatialReference::GetTOWGS84(), = OGRSpatialRefer-
ence::importFromProj4(), ~ OGRSpatialReference::IsSame(), MakeValueSafe(), = OGRSpatialRefer-
ence::morphTOESRI(), OGRSpatialReference::SetAngularUnits(), OGRSpatialReference::SetExtension(),
OGRSpatialReference::SetLinearUnitsAndUpdateParameters(), OGRSpatialReference::SetNode(),
OGRSpatialReference::SetProjParm(), OGRSpatialReference::SetTargetLinearUnits(), OGRSpatialRefer-
ence::SetTOWGS84(), and StripNodes().

13.35.3.9 OGR_SRSNode x* OGR_SRSNode::GetNode (const char x pszName)

Find named node in tree.

This method does a pre-order traversal of the node tree searching for a node with this exact value (case
insensitive), and returns it. Leaf nodes are not considered, under the assumption that they are just attribute
value nodes.

If a node appears more than once in the tree (such as UNIT for instance), the first encountered will be
returned. Use GetNode() (p. ??) on a subtree to be more specific.
Parameters:

pszName the name of the node to search for.

Returns:

a pointer to the node found, or NULL if none.

References GetNode().

Referenced by OGRSpatialReference::exportToProj4(), OGRSpatialReference::GetAttrNode(), GetN-
ode(), OGRSpatialReference::importFromProj4(), and OGRSpatialReference::SetGeocCS().

13.35.3.10 const char x OGR_SRSNode::GetValue () const [inline]
Fetch value string for this node.

Returns:

A non-NULL string is always returned. The returned pointer is to the internal value of this node, and
should not be modified, or freed.

Referenced by OGRSpatialReference::EPSGTreatsAsLatLong(), OGRSpatialReference::exportToPCI(),
OGRSpatialReference::exportToProj4(), OGRSpatialReference::FindProjParm(), OGRSpa-
tialReference::GetAngularUnits(), OGRSpatialReference::GetAttrValue(), OGRSpatialRefer-
ence::GetAuthorityCode(), OGRSpatialReference::GetAuthorityName(), OGRSpatialRefer-
ence::GetAxis(), OGRSpatialReference::GetExtension(), = OGRSpatialReference::GetInvFlattening(),
OGRSpatialReference::GetPrimeMeridian(), OGRSpatialReference::GetProjParm(), OGRSpa-
tialReference::GetSemiMajor(), OGRSpatialReference::GetTargetLinearUnits(), OGRSpatial-
Reference::GetTOWGS84(), OGRSpatialReference::importFromProj4(), OGRSpatialRefer-
ence::importFromURN(), OGRSpatialReference::IsCompound(), OGRSpatialReference::IsGeocentric(),

124 Class Documentation

OGRSpatialReference::IsGeographic(), OGRSpatialReference::IsProjected(), OGRSpatialRefer-

ence::IsSame(), OGRSpatialReference::IsVertical(), OGRSpatialReference::morphFromESRI(),
OGRSpatialReference::morphToESRI(), OGRSpatialReference::SetExtension(), OGRSpa-
tialReference::SetFromUserInput(), OGRSpatialReference::SetGeocCS(), OGRSpatialRefer-

ence::SetLinearUnitsAndUpdateParameters(), =~ OGRSpatialReference::SetNode(), = OGRSpatialRef-
erence::SetProjCS(), OGRSpatialReference::SetProjection(), = OGRSpatialReference::SetProjParm(),
OGRSpatialReference::SetVertCS(), and OGRSpatialReference::StripCTParms().

13.35.3.11 OGRErr OGR_SRSNode::importFromWkt (char xx ppszInput)

Import from WKT string.

This method will wipe the existing children and value of this node, and reassign them based on the contents
of the passed WKT string. Only as much of the input string as needed to construct this node, and it’s
children is consumed from the input string, and the input string pointer is then updated to point to the
remaining (unused) input.

Parameters:

ppszInput Pointer to pointer to input. The pointer is updated to point to remaining unused input text.

Returns:

OGRERR_NONE if import succeeds, or OGRERR_CORRUPT_DATA if it fails for any reason.

References AddChild(), importFromWkt(), OGR_SRSNode(), and SetValue().
Referenced by OGRSpatialReference::importFromWkt(), and importFromWkt().

13.35.3.12 void OGR_SRSNode::InsertChild (OGR_SRSNode « poNew, int iChild)

Insert the passed node as a child of target node, at the indicated position.

Note that ownership of the passed node is assumed by the node on which the method is invoked ... use
the Clone() (p. ??) method if the original is to be preserved. All existing children at location iChild and
beyond are push down one space to make space for the new child.

Parameters:

poNew the node to add as a child.

iChild position to insert, use O to insert at the beginning.

Referenced by AddChild(), OGRSpatialReference::CopyGeogCSFrom(), OGRSpatialRefer-
ence::morphFromESRI(), OGRSpatialReference::SetGeocCS(), OGRSpatialReference::SetGeogCS(),
OGRSpatialReference::SetProjCS(), OGRSpatialReference::SetProjection(), and OGRSpatialRefer-
ence::SetTOWGS84().

13.35.3.13 void OGR_SRSNode::MakeValueSafe ()

Massage value string, stripping special characters so it will be a database safe string.
The operation is also applies to all subnodes of the current node.

References GetChild(), GetChildCount(), and MakeValueSafe().

Referenced by MakeValueSafe().

13.35 OGR_SRSNode Class Reference 125

13.35.3.14 void OGR_SRSNode::SetValue (const char * pszNewValue)
Set the node value.

Parameters:

pszNewValue the new value to assign to this node. The passed string is duplicated and remains the
responsibility of the caller.

Referenced by applyRemapper(), importFromWkt(), OGRSpatialReference::morphFromESRI(),
OGRSpatialReference::morphTOESRI(), OGRSpatialReference::SetAngularUnits(), OGRSpatialRef-
erence::SetExtension(), OGRSpatialReference::SetNode(), OGRSpatialReference::SetProjParm(), and
OGRSpatialReference::SetTargetLinearUnits().

13.35.3.15 void OGR_SRSNode::StripNodes (const char x pszName)

Strip child nodes matching name.

Removes any decendent nodes of this node that match the given name. Of course children of removed
nodes are also discarded.

Parameters:

pszName the name for nodes that should be removed.

References DestroyChild(), FindChild(), GetChild(), GetChildCount(), and StripNodes().

Referenced by OGRSpatialReference::exportToPretty Wkt(), OGRSpatialReference::importFromEPSG(),
OGRSpatialReference::StripCTParms(), and StripNodes().

The documentation for this class was generated from the following files:

¢ ogr_spatialref.h
* ogr_srsnode.cpp

126 Class Documentation

13.36 ogr_style_param Struct Reference

The documentation for this struct was generated from the following file:

* ogr_featurestyle.h

13.37 ogr_style_value Struct Reference 127

13.37 ogr_style_value Struct Reference

The documentation for this struct was generated from the following file:

* ogr_featurestyle.h

128

Class Documentation

13.38 OGRACttrIndex Class Reference

Inheritance diagram for OGRAttrIndex::

\ OGRA(trIndex \

\ OGRMIALttrindex \

The documentation for this class was generated from the following files:

 ogr_attrind.h
* ogr_attrind.cpp

13.39 OGRCoordinateTransformation Class Reference 129

13.39 OGRCoordinateTransformation Class Reference

#include <ogr_spatialref.h>Inheritance diagram for OGRCoordinateTransformation::

‘ OGRCoordinateTransformation ‘

T

\ OGRProj4CT \

Public Member Functions

« virtual OGRSpatialReference « GetSourceCS ()=0
« virtual OGRSpatialReference « GetTargetCS ()=0
e virtual int Transform (int nCount, double *x, double *y, double *z=NULL)=0

e virtual int TransformEx (int nCount, double *x, double =xy, double *z=NULL, int
xpabSuccess=NULL)=0

Static Public Member Functions

* static void DestroyCT (OGRCoordinateTransformation «poCT)

OGRCoordinateTransformation (p.??) destructor.

13.39.1 Detailed Description

Interface for transforming between coordinate systems.

Currently, the only implementation within OGR is OGRProj4CT (p. ??), which requires the PROJ.4 li-
brary to be available at run-time.

Also, see OGRCreateCoordinateTransformation() (p. ??) for creating transformations.

13.39.2 Member Function Documentation

13.39.2.1 void OGRCoordinateTransformation::DestroyCT (OGRCoordinateTransformation *
poCT) [static]

OGRCoordinateTransformation (p.??) destructor. This function is the same as
OGRCoordinateTransformation::~OGRCoordinateTransformation() and OCTDestroyCoordinate-
Transformation() (p. ??)

This static method will destroy a OGRCoordinateTransformation (p. ??). It is equivalent to calling delete
on the object, but it ensures that the deallocation is properly executed within the OGR libraries heap on
platforms where this can matter (win32).

Parameters:

poCT the object to delete

130 Class Documentation

Since:

GDAL 1.7.0

13.39.2.2 virtual OGRSpatialReferencex OGRCoordinateTransformation::GetSourceCS ()
[pure virtual]
Fetch internal source coordinate system.

Implemented in OGRProj4CT (p. ??).

13.39.2.3 virtual OGRSpatialReferencex OGRCoordinateTransformation::GetTargetCS ()
[pure virtual]

Fetch internal target coordinate system.

Implemented in OGRProj4CT (p.??).

Referenced by OGRPolygon::transform(), OGRPoint::transform(), OGRLineString::transform(), and
OGRGeometryCollection::transform().

13.39.2.4 virtual int OGRCoordinateTransformation::Transform (int nCount, double * x, double
xy, double x z =NULL) [pure virtual]
Transform points from source to destination space.
This method is the same as the C function OCTTransform().
The method TransformEx() (p. ??) allows extended success information to be captured indicating which
points failed to transform.
Parameters:
nCount number of points to transform.
x array of nCount X vertices, modified in place.
y array of nCount Y vertices, modified in place.
z array of nCount Z vertices, modified in place.
Returns:

TRUE on success, or FALSE if some or all points fail to transform.

Implemented in OGRProj4CT (p. ??).
Referenced by OGRPoint::transform().

13.39.2.5 virtual int OGRCoordinateTransformation::TransformEx (int nCount, double * x,
double * y, double x z = NULL, int % pabSuccess = NULL) [pure virtual]

Transform points from source to destination space.

This method is the same as the C function OCTTransformEx().

Parameters:

nCount number of points to transform.

13.39 OGRCoordinateTransformation Class Reference 131

x array of nCount X vertices, modified in place.
y array of nCount Y vertices, modified in place.
z array of nCount Z vertices, modified in place.

pabSuccess array of per-point flags set to TRUE if that point transforms, or FALSE if it does not.

Returns:

TRUE if some or all points transform successfully, or FALSE if if none transform.

Implemented in OGRProj4CT (p.??).
Referenced by OGRLineString::transform().
The documentation for this class was generated from the following files:

¢ ogr_spatialref.h
* ogret.cpp

132 Class Documentation

13.40 OGRCurve Class Reference

#include <ogr_geometry.h>Inheritance diagram for OGRCurve::

| OGRGeometry |

T

| OGRCurve |

T

| OGRLineString |

T

| OGRLinearRing |

Public Member Functions

« virtual double get_Length () const =0

Returns the length of the curve.

e virtual void StartPoint (OGRPoint) const =0

Return the curve start point.

e virtual void EndPoint (OGRPoint %) const =0

Return the curve end point.

« virtual int get_IsClosed () const
Return TRUE if curve is closed.

e virtual void Value (double, OGRPoint %) const =0

Fetch point at given distance along curve.

13.40.1 Detailed Description

Abstract curve base class.

13.40.2 Member Function Documentation
13.40.2.1 void OGRCurve::EndPoint (OGRPoint *x poPoint) const [pure virtual]
Return the curve end point. This method relates to the SF COM ICurve::get_EndPoint() method.

Parameters:

poPoint the point to be assigned the end location.

Implemented in OGRLineString (p.??).
Referenced by get_IsClosed().

13.40 OGRCurve Class Reference 133

13.40.2.2 int OGRCurve::get_IsClosed () const [virtual]

Return TRUE if curve is closed. Tests if a curve is closed. A curve is closed if its start point is equal to its
end point.

This method relates to the SFCOM ICurve::get_IsClosed() method.

Returns:

TRUE if closed, else FALSE.

References EndPoint(), OGRPoint::getX(), OGRPoint::getY(), and StartPoint().

13.40.2.3 double OGRCurve::get_Length () const [pure virtual]

Returns the length of the curve. This method relates to the SFCOM ICurve::get_Length() method.

Returns:

the length of the curve, zero if the curve hasn’t been initialized.

Implemented in OGRLineString (p. 2?).

13.40.2.4 void OGRCurve::StartPoint (OGRPoint * poPoint) const [pure virtual]
Return the curve start point. This method relates to the SF COM ICurve::get_StartPoint() method.

Parameters:

poPoint the point to be assigned the start location.

Implemented in OGRLineString (p.??).
Referenced by get_IsClosed().

13.40.2.5 void OGRCurve::Value (double dfDistance, OGRPoint x poPoint) const [pure
virtual]

Fetch point at given distance along curve. This method relates to the SF COM ICurve::get_Value() method.

Parameters:

dfDistance distance along the curve at which to sample position. This distance should be between
zero and get_Length() (p. ??) for this curve.

poPoint the point to be assigned the curve position.

Implemented in OGRLineString (p.??).

The documentation for this class was generated from the following files:

* ogr_geometry.h
* ogrcurve.cpp

134 Class Documentation

13.41 OGRDataSource Class Reference

#include <ogrsf_frmts.h>

Public Member Functions

e virtual const char * GetName ()=0

Returns the name of the data source.

* virtual int GetLayerCount ()=0

Get the number of layers in this data source.

« virtual OGRLayer * GetLayer (int)=0
Fetch a layer by index.

¢ virtual OGRLayer * GetLayerByName (const char x)

Fetch a layer by name.

« virtual OGRErr DeleteLayer (int)

Delete the indicated layer from the datasource.

« virtual int TestCapability (const char *x)=0
Test if capability is available.

e virtual OGRLayer =+ CreateLayer (const char x*pszName, OGRSpatialRefer-
ence xpoSpatialRef=NULL, OGRwkbGeometryType eGType=wkbUnknown, char
#xpapszOptions=NULL)

This method attempts to create a new layer on the data source with the indicated name, coordinate system,
geometry type.

 virtual OGRLayer * CopyLayer (OGRLayer *poSrcLayer, const char spszNewName, char
s*xpapszOptions=NULL)

Duplicate an existing layer.

« virtual OGRStyleTable + GetStyleTable ()

Returns data source style table.

« virtual void SetStyleTableDirectly (OGRStyleTable xpoStyleTable)

Set data source style table.

* virtual void SetStyleTable (OGRStyleTable xpoStyleTable)

Set data source style table.

« virtual OGRLayer * ExecuteSQL (const char xpszStatement, OGRGeometry xpoSpatialFilter,
const char xpszDialect)

Execute an SQL statement against the data store.

« virtual void ReleaseResultSet (OGRLayer *poResultsSet)
Release results of ExecuteSQL() (p.??).

13.41 OGRDataSource Class Reference 135

¢ virtual OGRErr SyncToDisk ()
Flush pending changes to disk.

¢ int Reference ()

Increment datasource reference count.

¢ int Dereference ()

Decrement datasource reference count.

¢ int GetRefCount () const

Fetch reference count.

¢ int GetSummaryRefCount () const

Fetch reference count of datasource and all owned layers.

¢ OGRErr Release ()

Drop a reference to this datasource, and if the reference count drops to zero close (destroy) the datasource.

* OGRSFDriver = GetDriver () const

Returns the driver that the dataset was opened with.

¢ void SetDriver (OGRSFDriver xpoDriver)

Sets the driver that the dataset was created or opened with.

Static Public Member Functions

* static void DestroyDataSource (OGRDataSource x)

Closes opened datasource and releases allocated resources.

Friends

* class OGRSFDriverRegistrar

13.41.1 Detailed Description

This class represents a data source. A data source potentially consists of many layers (OGRLayer (p. 2?)).
A data source normally consists of one, or a related set of files, though the name doesn’t have to be a real
item in the file system.

When an OGRDataSource (p. ??) is destroyed, all it’s associated OGRLayers objects are also destroyed.

13.41.2 Member Function Documentation

13.41.2.1 OGRLayer x* OGRDataSource::CopyLayer (OGRLayer * poSrcLayer, const char x
pszNewName, char xx papszOptions = NULL) [virtual]

Duplicate an existing layer. This method creates a new layer, duplicate the field definitions of the source
layer and then duplicate each features of the source layer. The papszOptions argument can be used to

136 Class Documentation

control driver specific creation options. These options are normally documented in the format specific
documentation. The source layer may come from another dataset.

This method is the same as the C function OGR_DS_CopyLayer() (p. ??).

Parameters:

poSrcLayer source layer.
pszNewName the name of the layer to create.

papszOptions a StringList of name=value options. Options are driver specific.

Returns:

an handle to the layer, or NULL if an error occurs.

References OGRLayer::CreateFeature(), OGRFeature::CreateFeature(), OGRLayer::CreateField(),
CreateLayer(), OGRFeature::DestroyFeature(), OGRPFeature::GetFID(), OGRPFeature-
Defn::GetFieldCount(), OGRFeatureDefn::GetFieldDefn(), OGRFeatureDefn::GetFieldIndex(),
OGRFeatureDefn::GetGeomType(), OGRLayer::GetLayerDefn(), OGRFeatureDefn::GetName(),
OGREFieldDefn::GetNameRef(), OGRLayer::GetNextFeature(), OGRLayer::GetSpatialRef(), OGR-
Layer::ResetReading(), OGRFeature::SetFID(), OGRFeature::SetFrom(), OGRLayer::TestCapability(),
and TestCapability().

Referenced by OGRSFDriver::CopyDataSource().

13.41.2.2 OGRLayer * OGRDataSource::CreateLayer (const char * pszName,
OGRSpatialReference * poSpatialRef = NULL, OGRwkbGeometryType eGType =
wkbUnknown, char xx papszOptions = NULL) [virtuall]

This method attempts to create a new layer on the data source with the indicated name, coordinate system,
geometry type. The papszOptions argument can be used to control driver specific creation options. These
options are normally documented in the format specific documentation.

Parameters:

pszName the name for the new layer. This should ideally not match any existing layer on the data-
source.

poSpatialRef the coordinate system to use for the new layer, or NULL if no coordinate system is
available.

eGType the geometry type for the layer. Use wkbUnknown if there are no constraints on the types
geometry to be written.

papszOptions a StringList of name=value options. Options are driver specific.

Returns:

NULL is returned on failure, or a new OGRLayer (p. ??) handle on success.

Example:

#include "ogrsf_frmts.h"
#include "cpl_string.h"

OGRLayer =*polayer;

13.41 OGRDataSource Class Reference 137

char *papszOptions;

if('poDS->TestCapability(ODsCCreatelLayer))
{

}

papszOptions = CSLSetNameValue(papszOptions, "DIM", "2");
polayer = poDS—->Createlayer("NewLayer", NULL, wkbUnknown,
papszOptions);

CSLDestroy (papszOptions);

if (polayer == NULL)
{

}

Referenced by CopyLayer().

13.41.2.3 OGRErr OGRDataSource::DeleteLayer (int iLayer) [virtual]

Delete the indicated layer from the datasource. If this method is supported the ODsCDeleteLayer capability
will test TRUE on the OGRDataSource (p. ??).

This method is the same as the C function OGR_DS_DeleteLayer() (p. ??).

Parameters:

iLayer the index of the layer to delete.

Returns:

OGRERR_NONE on success, or OGRERR_UNSUPPORTED_OPERATION if deleting layers is not
supported for this datasource.

13.41.2.4 int OGRDataSource::Dereference ()
Decrement datasource reference count. This method is the same as the C function OGR_DS_Dereference().

Returns:

the reference count after decrementing.

Referenced by ExecuteSQL().

13.41.2.5 void OGRDataSource::DestroyDataSource (OGRDataSource x poDS) [static]

Closes opened datasource and releases allocated resources. This static method will close and destroy a
datasource. It is equivelent to calling delete on the object, but it ensures that the deallocation is properly
executed within the GDAL libraries heap on platforms where this can matter (win32).

This method is the same as the C function OGR_DS_Destroy() (p. 2?).

Parameters:

poDS pointer to allocated datasource object.

138 Class Documentation

13.41.2.6 OGRLayer x OGRDataSource::ExecuteSQL (const char * pszStatement, OGRGeometry
* poSpatialFilter, const char x pszDialect) [virtuall]

Execute an SQL statement against the data store. The result of an SQL query is either NULL for statements
that are in error, or that have no results set, or an OGRLayer (p. ??) pointer representing a results set from
the query. Note that this OGRLayer (p.??) is in addition to the layers in the data store and must be
destroyed with OGRDataSource::ReleaseResultSet() (p. ??) before the data source is closed (destroyed).

This method is the same as the C function OGR_DS_ExecuteSQL() (p. ??).

For more information on the SQL dialect supported internally by OGR review the OGR SQL document.
Some drivers (ie. Oracle and PostGIS) pass the SQL directly through to the underlying RDBMS.
Parameters:

pszStatement the SQL statement to execute.
poSpatialFilter geometry which represents a spatial filter. Can be NULL.
pszDialect allows control of the statement dialect. If set to NULL, the OGR SQL engine will be
used, except for RDBMS drivers that will use their dedicated SQL engine, unless OGRSQL is
explicitely passed as the dialect.
Returns:
an OGRLayer (p. ??) containing the results of the query. Deallocate with ReleaseResultSet() (p. ??).
References Dereference(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetFieldDefn(),
GetLayerByName(), OGRLayer::GetLayerDefn(), OGRSFDriver::GetName(), OGREField-

Defn::GetNameRef(), OGRSFDriverRegistrar::GetRegistrar(), OGRFieldDefn::GetType(), OFTInteger,
OFTReal, and OFTString.

13.41.2.7 OGRSFDriver x* OGRDataSource::GetDriver () const

Returns the driver that the dataset was opened with. This method is the same as the C function OGR_DS_-
GetDriver() (p. 2?).

Returns:

NULL if driver info is not available, or pointer to a driver owned by the OGRSFDriverManager.

Referenced by OGRSFDriver::CopyDataSource(), = OGR_Dr_CopyDataSource(), = OGR_Dr_-
CreateDataSource(), OGR_Dr_Open(), and OGRSFDriverRegistrar::Open().

13.41.2.8 OGRLayer x OGRDataSource::GetLayer (int iLayer) [pure virtual]

Fetch a layer by index. The returned layer remains owned by the OGRDataSource (p. ??) and should not
be deleted by the application.

This method is the same as the C function OGR_DS_GetLayer() (p. ??).

Parameters:

iLayer alayer number between 0 and GetLayerCount() (p. ??)-1.

Returns:

the layer, or NULL if iLayer is out of range or an error occurs.

13.41 OGRDataSource Class Reference 139

Referenced by OGRSFDriver::CopyDataSource(), GetLayerByName(), GetSummaryRefCount(), and
SyncToDisk().

13.41.2.9 OGRLayer + OGRDataSource::GetLayerByName (const char x pszLayerName)
[virtual]

Fetch a layer by name. The returned layer remains owned by the OGRDataSource (p. ??) and should not
be deleted by the application.

This method is the same as the C function OGR_DS_GetLayerByName() (p. 2?).

Parameters:

pszLayerName the layer name of the layer to fetch.

Returns:

the layer, or NULL if Layer is not found or an error occurs.

References GetLayer(), GetLayerCount(), and OGRLayer::GetName().
Referenced by ExecuteSQL().

13.41.2.10 int OGRDataSource::GetLayerCount () [pure virtual]

Get the number of layers in this data source. This method is the same as the C function OGR_DS_-
GetLayerCount() (p. ??).

Returns:

layer count.

Referenced by OGRSFDriver::CopyDataSource(), GetLayerByName(), GetSummaryRefCount(), and
SyncToDisk().

13.41.2.11 const char x OGRDataSource::GetName () [pure virtual]
Returns the name of the data source. This string should be sufficient to open the data source if passed to

the same OGRSFDriver (p. ??) that this data source was opened with, but it need not be exactly the same
string that was used to open the data source. Normally this is a filename.

This method is the same as the C function OGR_DS_GetName() (p. 2?).

Returns:

pointer to an internal name string which should not be modified or freed by the caller.

13.41.2.12 int OGRDataSource::GetRefCount () const
Fetch reference count. This method is the same as the C function OGR_DS_GetRefCount().

Returns:

the current reference count for the datasource object itself.

140 Class Documentation

13.41.2.13 OGRStyleTable « OGRDataSource::GetStyleTable () [virtual]
Returns data source style table. This method is the same as the C function OGR_DS_GetStyleTable().

Returns:

pointer to a style table which should not be modified or freed by the caller.

13.41.2.14 int OGRDataSource::GetSummaryRefCount () const

Fetch reference count of datasource and all owned layers. This method is the same as the C function
OGR_DS_GetSummaryRefCount().

Returns:

the current summary reference count for the datasource and its layers.

References GetLayer(), GetLayerCount(), and OGRLayer::GetRefCount().

13.41.2.15 int OGRDataSource::Reference ()

Increment datasource reference count. This method is the same as the C function OGR_DS_Reference().

Returns:

the reference count after incrementing.

Referenced by OGRSFDriverRegistrar::Open().

13.41.2.16 OGRErr OGRDataSource::Release ()

Drop a reference to this datasource, and if the reference count drops to zero close (destroy) the datasource.
Internally this actually calls the OGRSFDriverRegistrar::ReleaseDataSource() method. This method is
essentially a convenient alias.

This method is the same as the C function OGRReleaseDataSource() (p. ??).

Returns:

OGRERR_NONE on success or an error code.

References OGRSFDriverRegistrar::GetRegistrar().

13.41.2.17 void OGRDataSource::ReleaseResultSet (OGRLayer * poResultsSet) [virtual]

Release results of ExecuteSQL() (p.??). This method should only be used to deallocate OGRLayers
resulting from an ExecuteSQL() (p. ??) call on the same OGRDataSource (p. ??). Failure to deallocate a
results set before destroying the OGRDataSource (p. ??) may cause errors.

This method is the same as the C function OGR_L_ReleaseResultSet().

Parameters:

poResultsSet the result of a previous ExecuteSQL() (p. 2?) call.

13.41 OGRDataSource Class Reference 141

13.41.2.18 void OGRDataSource::SetDriver (OGRSFDriver * poDriver)

Sets the driver that the dataset was created or opened with.

Note:
This method is not exposed as the OGR C API function.

Parameters:
poDriver pointer to driver instance associated with the data source.

Referenced by OGRSFDriver::CopyDataSource(), = OGR_Dr_CopyDataSource(), = OGR_Dr_-
CreateDataSource(), and OGR_Dr_Open().

13.41.2.19 void OGRDataSource::SetStyleTable (OGRStyleTable « poStyleTable) [virtuall]

Set data source style table. This method operate exactly as OGRDataSource::SetStyleTableDirectly()
(p- ??) except that it does not assume ownership of the passed table.

This method is the same as the C function OGR_DS_SetStyleTable().

Parameters:

poStyleTable pointer to style table to set

References OGRStyleTable::Clone().

13.41.2.20 void OGRDataSource::SetStyleTableDirectly (OGRStyleTable * poStyleTable)
[virtual]

Set data source style table. This method operate exactly as OGRDataSource::SetStyleTable() (p.??)
except that it assumes ownership of the passed table.

This method is the same as the C function OGR_DS_SetStyleTableDirectly().

Parameters:

poStyleTable pointer to style table to set

13.41.2.21 OGRErr OGRDataSource::SyncToDisk () [virtual]

Flush pending changes to disk. This call is intended to force the datasource to flush any pending writes
to disk, and leave the disk file in a consistent state. It would not normally have any effect on read-only
datasources.

Some data sources do not implement this method, and will still return OGRERR_NONE. An error is only
returned if an error occurs while attempting to flush to disk.

The default implementation of this method just calls the SyncToDisk() (p.??) method on each of the
layers. Conceptionally, calling SyncToDisk() (p. ??) on a datasource should include any work that might
be accomplished by calling SyncToDisk() (p. ??) on layers in that data source.

In any event, you should always close any opened datasource with OGRData-
Source::DestroyDataSource() (p. ??) that will ensure all data is correctly flushed.

This method is the same as the C function OGR_DS_SyncToDisk() (p. 2?).

142 Class Documentation

Returns:

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

References GetLayer(), GetLayerCount(), and OGRLayer::SyncToDisk().

13.41.2.22 int OGRDataSource::TestCapability (const char * pszCapability) [pure virtual]

Test if capability is available. One of the following data source capability names can be passed into this
method, and a TRUE or FALSE value will be returned indicating whether or not the capability is available
for this object.

* ODsCCreateLayer: True if this datasource can create new layers.

The #define macro forms of the capability names should be used in preference to the strings themselves to
avoid mispelling.

This method is the same as the C function OGR_DS_TestCapability() (p. ??).

Parameters:

pszCapability the capability to test.

Returns:

TRUE if capability available otherwise FALSE.

Referenced by CopyLayer().

The documentation for this class was generated from the following files:

¢ ogrsf_frmts.h
e ogrsf_frmts.dox
* ogrdatasource.cpp

13.42 OGREnvelope Class Reference

143

13.42 OGREnvelope Class Reference

#include <ogr_core.h>Inheritance diagram for OGREnvelope::

OGREnNvelope

OGREnNvelope3D

13.42.1 Detailed Description

Simple container for a bounding region.

The documentation for this class was generated from the following file:

e ogr_core.h

144

Class Documentation

13.43 OGREnvelope3D Class Reference

#include <ogr_core.h>Inheritance diagram for OGREnvelope3D::

OGREnNvelope

OGREnNvelope3D

13.43.1 Detailed Description

Simple container for a bounding region in 3D.

The documentation for this class was generated from the following file:

e ogr_core.h

13.44 OGRFeature Class Reference 145

13.44 OGRFeature Class Reference

#include <ogr_feature.h>

Public Member Functions

* OGRFeature (OGRFeatureDefn)

Constructor.

¢ OGRFeatureDefn x GetDefnRef ()

Fetch feature definition.

¢ OGREir SetGeometryDirectly (OGRGeometry)

Set feature geometry.

* OGRErr SetGeometry (OGRGeometry)

Set feature geometry.

* OGRGeometry x GetGeometryRef ()

Fetch pointer to feature geometry.

¢ OGRGeometry * StealGeometry ()

Take away ownership of geometry.

¢ OGRFeature * Clone ()

Duplicate feature.

* virtual OGRBoolean Equal (OGRFeature xpoFeature)

Test if two features are the same.

¢ int GetFieldCount ()

Fetch number of fields on this feature. This will always be the same as the field count for the OGRFeature-
Defn (p.??).

¢ OGRFieldDefn * GetFieldDefnRef (int iField)
Fetch definition for this field.

¢ int GetFieldIndex (const char xpszName)
Fetch the field index given field name.

« int IsFieldSet (int iField) const

Test if a field has ever been assigned a value or not.

* void UnsetField (int iField)

Clear a field, marking it as unset.

¢ OGRField * GetRawFieldRef (int i)

Fetch a pointer to the internal field value given the index.

146 Class Documentation

¢ int GetFieldAsInteger (int i)

Fetch field value as integer.

¢ double GetFieldAsDouble (int i)
Fetch field value as a double.

* const char * GetFieldAsString (int i)

Fetch field value as a string.

* const int ¥+ GetFieldAsIntegerList (int i, int *pnCount)

Fetch field value as a list of integers.

* const double * GetFieldAsDoubleList (int i, int xpnCount)
Fetch field value as a list of doubles.

¢ char xx GetFieldAsStringList (int i) const

Fetch field value as a list of strings.

* GByte * GetFieldAsBinary (int i, int *pnCount)
Fetch field value as binary data.

« int GetFieldAsDateTime (int i, int *pnYear, int xpnMonth, int *pnDay, int xpnHour, int xpnMinute,
int ¥*pnSecond, int *pnTZFlag)

Fetch field value as date and time.

¢ void SetField (int i, int nValue)

Set field to integer value.

¢ void SetField (int i, double dfValue)
Set field to double value.

* void SetField (int i, const char xpszValue)

Set field to string value.

* void SetField (int i, int nCount, int xpanValues)

Set field to list of integers value.

¢ void SetField (int i, int nCount, double xpadfValues)
Set field to list of doubles value.

* void SetField (int i, char *xpapszValues)

Set field to list of strings value.

¢ void SetField (int i, OGRField xpuValue)
Set field.

¢ void SetField (int i, int nCount, GByte *pabyBinary)
Set field to binary data.

13.44 OGRFeature Class Reference 147

¢ void SetField (int i, int nYear, int nMonth, int nDay, int nHour=0, int nMinute=0, int nSecond=0, int
nTZFlag=0)

Set field to date.

¢ long GetFID ()

Get feature identifier.

¢ virtual OGRErr SetFID (long nFID)

Set the feature identifier.

* void DumpReadable (FILE x, char sxpapszOptions=NULL)

Dump this feature in a human readable form.

¢ OGRErr SetFrom (OGRFeature *, int=TRUE)

Set one feature from another.

¢ OGRErr SetFrom (OGRFeature x*, int *, int=TRUE)

Set one feature from another.

* virtual const char * GetStyleString ()

Fetch style string for this feature.

* virtual void SetStyleString (const char x)

Set feature style string. This method operate exactly as OGRFeature::SetStyleStringDirectly() (p.??) ex-
cept that it does not assume ownership of the passed string, but instead makes a copy of it.

« virtual void SetStyleStringDirectly (char *)

Set feature style string. This method operate exactly as OGRFeature::SetStyleString() (p.??) except that it
assumes ownership of the passed string.

Static Public Member Functions

¢ static OGRFeature * CreateFeature (OGRFeatureDefn x)

Feature factory.

« static void DestroyFeature (OGRFeature x)

Destroy feature.

13.44.1 Detailed Description

A simple feature, including geometry and attributes.

148 Class Documentation

13.44.2 Constructor & Destructor Documentation
13.44.2.1 OGRFeature::OGRFeature (OGRFeatureDefn « poDefnln)

Constructor. Note that the OGRFeature (p. ??) will increment the reference count of it’s defining OGR-
FeatureDefn (p. ??). Destruction of the OGRFeatureDefn (p. ??) before destruction of all OGRFeatures
that depend on it is likely to result in a crash.

This method is the same as the C function OGR_F_Create() (p. ??).

Parameters:

poDefnln feature class (layer) definition to which the feature will adhere.

References OGRFeatureDefn::GetFieldCount(), and OGRFeatureDefn::Reference().
Referenced by Clone(), and CreateFeature().

13.44.3 Member Function Documentation
13.44.3.1 OGRFeature x OGRFeature::Clone ()

Duplicate feature. The newly created feature is owned by the caller, and will have it’s own reference to the
OGRFeatureDefn (p. ??).

This method is the same as the C function OGR_F_Clone() (p. 2?).

Returns:

new feature, exactly matching this feature.

References GetFID(), OGRFeatureDefn::GetFieldCount(), GetStyleString(), OGRFeature(), SetFID(), Set-
Field(), SetGeometry(), and SetStyleString().

Referenced by OGRGenSQLResultsLayer::GetFeature().

13.44.3.2 OGRFeature * OGRFeature::CreateFeature (OGRFeatureDefn * poDefn) [static]

Feature factory. This is essentially a feature factory, useful for applications creating features but wanting
to ensure they are created out of the OGR/GDAL heap.

This method is the same as the C function OGR_F_Create() (p. 2?).

Parameters:

poDefn Feature definition defining schema.

Returns:

new feature object with null fields and no geometry. May be deleted with delete.

References OGRFeature().
Referenced by OGRDataSource::CopyLayer().

13.44 OGRFeature Class Reference 149

13.44.3.3 void OGRFeature::DestroyFeature (OGRFeature * poFeature) [static]

Destroy feature. The feature is deleted, but within the context of the GDAL/OGR heap. This is necessary
when higher level applications use GDAL/OGR from a DLL and they want to delete a feature created within
the DLL. If the delete is done in the calling application the memory will be freed onto the application heap
which is inappropriate.

This method is the same as the C function OGR_F_Destroy() (p. 2?).

Parameters:

poFeature the feature to delete.

Referenced by OGRDataSource::CopyLayer().

13.44.3.4 void OGRFeature::DumpReadable (FILE x fpOut, char xx papszOptions = NULL)

Dump this feature in a human readable form. This dumps the attributes, and geometry; however, it doesn’t
definition information (other than field types and names), nor does it report the geometry spatial reference
system.

A few options can be defined to change the default dump :

DISPLAY_FIELDS=NO : to hide the dump of the attributes

DISPLAY_STYLE=NO : to hide the dump of the style string

DISPLAY_GEOMETRY=NO : to hide the dump of the geometry

DISPLAY_GEOMETRY=SUMMARY : to get only a summary of the geometry
This method is the same as the C function OGR_F_DumpReadable() (p. 2?).

Parameters:

JpOut the stream to write to, such as stdout. If NULL stdout will be used.
papszOptions NULL terminated list of options (may be NULL)

References OGRGeometry::dumpReadable(), GetFID(), GetFieldAsString(), GetFieldCount(), OGRFea-
tureDefn::GetFieldDefn(), OGRFieldDefn::GetFieldTypeName(), OGRFeatureDefn::GetName(), OGR-
FieldDefn::GetNameRef(), GetStyleString(), OGRFieldDefn::GetType(), and IsFieldSet().

13.44.3.5 OGRBoolean OGRFeature::Equal (OGRFeature * poFeature) [virtual]

Test if two features are the same. Two features are considered equal if the share them (pointer equality)
same OGRFeatureDefn (p. ??), have the same field values, and the same geometry (as tested by OGRGe-
ometry::Equal()) as well as the same feature id.

This method is the same as the C function OGR_F_Equal() (p. ??).

Parameters:

poFeature the other feature to test this one against.

Returns:

TRUE if they are equal, otherwise FALSE.

150 Class Documentation

References OGRGeometry::Equals(), GetDefnRef(), GetFID(), GetFieldAsBinary(), GetFieldAs-
DateTime(), GetFieldAsDouble(), GetFieldAsDoubleList(), GetFieldAsInteger(), GetFieldAsInte-
gerList(), GetFieldAsString(), GetFieldAsStringList(), OGRFeatureDefn::GetFieldCount(), OGRFeature-
Defn::GetFieldDefn(), GetGeometryRef(), OGRFieldDefn::GetType(), IsFieldSet(), OFTBinary, OFT-
Date, OFTDateTime, OFTInteger, OF TIntegerList, OFTReal, OFTRealList, OFTString, OFTStringList,
and OFTTime.

13.44.3.6 OGRFeatureDefn x OGRFeature::GetDefnRef () [inline]

Fetch feature definition. This method is the same as the C function OGR_F_GetDefnRef() (p. ??).

Returns:

a reference to the feature definition object.

Referenced by Equal().

13.44.3.7 long OGRFeature::GetFID () [inline]

Get feature identifier. This method is the same as the C function OGR_F_GetFID() (p. 2?).
Returns:
feature id or OGRNulIFID if none has been assigned.

Referenced by Clone(), OGRDataSource::CopyLayer(), DumpReadable(), Equal(), OGR-
Layer::GetFeature(), GetFieldAsDouble(), GetFieldAsInteger(), and GetFieldAsString().

13.44.3.8 GByte x OGRFeature::GetFieldAsBinary (int iField, int x pnBytes)

Fetch field value as binary data. Currently this method only works for OFTBinary fields.
This method is the same as the C function OGR_F_GetFieldAsBinary() (p. 2?).

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. ??)-1.
pnBytes location to put the number of bytes returned.

Returns:
the field value. This data is internal, and should not be modified, or freed. Its lifetime may be very
brief.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), and OFTBinary.
Referenced by Equal().

13.44.3.9 int OGRFeature::GetFieldAsDateTime (int iField, int x pnYear, int x pnMonth, int x
pnDay, int x pnHour, int x pnMinute, int x pnSecond, int x pnTZFlag)

Fetch field value as date and time. Currently this method only works for OFTDate, OFTTime and OFT-
DateTime fields.

This method is the same as the C function OGR_F_GetFieldAsDateTime() (p. ??).

13.44 OGRFeature Class Reference 151

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. ??)-1.

pnYear (including century)

pnMonth (1-12)

pnDay (1-31)

pnHour (0-23)

pnMinute (0-59)

pnSecond (0-59)

pnTZFlag (O=unknown, 1=localtime, 100=GMT, see data model for details)

Returns:

TRUE on success or FALSE on failure.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTDate, OFT-
DateTime, and OFTTime.

Referenced by Equal().

13.44.3.10 double OGRFeature::GetFieldAsDouble (int iField)
Fetch field value as a double. OFTString features will be translated using atof(). OFTInteger fields will be

cast to double. Other field types, or errors will result in a return value of zero.

This method is the same as the C function OGR_F_GetFieldAsDouble() (p. ??).

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. ??)-1.

Returns:

the field value.

References GetFID(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetFieldDefn(), OGRField-
Defn::GetType(), IsFieldSet(), OFTInteger, OFTReal, and OFTString.

Referenced by Equal(), and SetFrom().

13.44.3.11 const double x OGRFeature::GetFieldAsDoubleList (int iField, int x pnCount)

Fetch field value as a list of doubles. Currently this method only works for OFTRealList fields.
This method is the same as the C function OGR_F_GetFieldAsDoubleList() (p. ??).

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. ??)-1.

pnCount an integer to put the list count (number of doubles) into.

Returns:

the field value. This list is internal, and should not be modified, or freed. Its lifetime may be very brief.
If xpnCount is zero on return the returned pointer may be NULL or non-NULL.

152 Class Documentation

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), and OFTReal-
List.

Referenced by Equal(), and SetFrom().

13.44.3.12 int OGRFeature::GetFieldAsInteger (int iField)
Fetch field value as integer. OFTString features will be translated using atoi(). OFTReal fields will be cast

to integer. Other field types, or errors will result in a return value of zero.

This method is the same as the C function OGR_F_GetFieldAsInteger() (p. 2?).

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. ??)-1.

Returns:

the field value.

References GetFID(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetFieldDefn(), OGRField-
Defn::GetType(), IsFieldSet(), OFTInteger, OFTReal, and OFTString.

Referenced by Equal(), and SetFrom().

13.44.3.13 const int + OGRFeature::GetFieldAsIntegerList (int iField, int x pnCount)

Fetch field value as a list of integers. Currently this method only works for OFTIntegerList fields.
This method is the same as the C function OGR_F_GetFieldAsIntegerList() (p. 2?).

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. ??)-1.

pnCount an integer to put the list count (number of integers) into.

Returns:

the field value. This list is internal, and should not be modified, or freed. Its lifetime may be very brief.
If *pnCount is zero on return the returned pointer may be NULL or non-NULL.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), and OFTInte-
gerList.

Referenced by Equal(), and SetFrom().

13.44.3.14 const char x OGRFeature::GetFieldAsString (int iField)

Fetch field value as a string. OFTReal and OFTInteger fields will be translated to string using sprintf(),
but not necessarily using the established formatting rules. Other field types, or errors will result in a return
value of zero.

This method is the same as the C function OGR_F_GetFieldAsString() (p. 2?).

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. 2?)-1.

13.44 OGRFeature Class Reference 153

Returns:

the field value. This string is internal, and should not be modified, or freed. Its lifetime may be very
brief.

References OGRGeometry::exportToWkt(), GetFID(), OGRFeatureDefn::GetFieldCount(), OGRFea-
tureDefn::GetFieldDefn(), OGRGeometry::getGeometryName(), OGRFieldDefn::GetPrecision(), Get-
StyleString(), OGRFieldDefn::GetType(), OGRFieldDefn::GetWidth(), IsFieldSet(), OFTBinary, OFT-
Date, OFTDateTime, OFTInteger, OF TIntegerList, OFTReal, OFTRealList, OFTString, OFTStringList,
and OFTTime.

Referenced by DumpReadable(), Equal(), GetStyleString(), and SetFrom().

13.44.3.15 char «x OGRFeature::GetFieldAsStringList (int iField) const

Fetch field value as a list of strings. Currently this method only works for OFTStringList fields.

The returned list is terminated by a NULL pointer. The number of elements can also be calculated using
CSLCount() (p.??).

This method is the same as the C function OGR_F_GetFieldAsStringList() (p. ??).

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. ??)-1.

Returns:

the field value. This list is internal, and should not be modified, or freed. Its lifetime may be very brief.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), and OFT-
StringList.

Referenced by Equal().
13.44.3.16 int OGRFeature::GetFieldCount () [inline]

Fetch number of fields on this feature. This will always be the same as the field count for the OGRFea-
tureDefn (p. ??). This method is the same as the C function OGR_F_GetFieldCount() (p. ??).

Returns:

count of fields.

Referenced by DumpReadable(), OGR_F_IsFieldSet(), and SetFrom().

13.44.3.17 OGREFieldDefn x« OGRFeature::GetFieldDefnRef (int iField) [inline]

Fetch definition for this field. This method is the same as the C function OGR_F_GetFieldDefnRef()
(P-??7).

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. ??)-1.

154 Class Documentation

Returns:

the field definition (from the OGRFeatureDefn (p. ??)). This is an internal reference, and should not
be deleted or modified.

Referenced by SetFrom().

13.44.3.18 int OGRFeature::GetFieldIndex (const char * pszName) [inline]

Fetch the field index given field name. This is a cover for the OGRFeatureDefn::GetFieldIndex() (p. ??)
method.

This method is the same as the C function OGR_F_GetFieldIndex() (p. ??).

Parameters:

pszName the name of the field to search for.

Returns:

the field index, or -1 if no matching field is found.

Referenced by GetStyleString(), and SetFrom().

13.44.3.19 OGRGeometry x OGRFeature::GetGeometryRef () [inline]

Fetch pointer to feature geometry. This method is the same as the C function OGR_F_GetGeometryRef()
(p-??7).

Returns:

pointer to internal feature geometry. This object should not be modified.

Referenced by Equal(), OGRLayer::GetExtent(), and SetFrom().

13.44.3.20 OGRField * OGRFeature::GetRawFieldRef (int iField) [inline]

Fetch a pointer to the internal field value given the index. This method is the same as the C function
OGR_F_GetRawFieldRef() (p. 2?).

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. ??)-1.

Returns:

the returned pointer is to an internal data structure, and should not be freed, or modified.

Referenced by SetFrom().

13.44 OGRFeature Class Reference 155

13.44.3.21 const char x« OGRFeature::GetStyleString () [virtual]

Fetch style string for this feature. Set the OGR Feature Style Specification for details on the format of this
string, and ogr_featurestyle.h (p. ??) for services available to parse it.

This method is the same as the C function OGR_F_GetStyleString() (p. ??).

Returns:

a reference to a representation in string format, or NULL if there isn’t one.

References GetFieldAsString(), and GetFieldIndex().

Referenced by Clone(), DumpReadable(), GetFieldAsString(), OGRStyleMgr::InitFromFeature(), and Set-
From().

13.44.3.22 int OGRFeature::IsFieldSet (int iField) const

Test if a field has ever been assigned a value or not. This method is the same as the C function OGR_F_-
IsFieldSet() (p. ??).

Parameters:

iField the field to test.

Returns:

TRUE if the field has been set, otherwise false.

References OGRFeatureDefn::GetFieldCount().

Referenced by DumpReadable(), Equal(), GetFieldAsBinary(), GetFieldAsDateTime(), GetFieldAsDou-
ble(), GetFieldAsDoubleList(), GetFieldAsInteger(), GetFieldAsIntegerList(), GetFieldAsString(), Get-
FieldAsStringList(), OGR_F_IsFieldSet(), SetField(), SetFrom(), and UnsetField().

13.44.3.23 OGRErr OGRFeature::SetFID (long nFID) [virtual]

Set the feature identifier. For specific types of features this operation may fail on illegal features ids.
Generally it always succeeds. Feature ids should be greater than or equal to zero, with the exception of
OGRNUIIFID (-1) indicating that the feature id is unknown.

This method is the same as the C function OGR_F_SetFID() (p. 2?).

Parameters:

nFID the new feature identifier value to assign.

Returns:

On success OGRERR_NONE, or on failure some other value.

Referenced by Clone(), OGRDataSource::CopyLayer(), OGRGenSQLResultsLayer::GetFeature(), and
SetFrom().

156 Class Documentation

13.44.3.24 void OGRFeature::SetField (int iField, int nYear, int nMonth, int nDay, int nHour =
0, int nMinute = 0, int nSecond = 0, int nTZFlag = 0)

Set field to date. This method currently only has an effect for OFTDate, OFTTime and OFTDateTime
fields.

This method is the same as the C function OGR_F_SetFieldDateTime() (p. ??).

Parameters:

iField the field to set, from 0 to GetFieldCount() (p. ??)-1.

nYear (including century)

nMonth (1-12)

nDay (1-31)

nHour (0-23)

nMinute (0-59)

nSecond (0-59)

nTZFlag (O=unknown, l=localtime, 100=GMT, see data model for details)

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OFTDate, OFTDateTime, and
OFTTime.

13.44.3.25 void OGRFeature::SetField (int iField, int nBytes, GByte x pabyData)

Set field to binary data. This method currently on has an effect of OFTBinary fields.
This method is the same as the C function OGR_F_SetFieldBinary() (p. 2?).

Parameters:

iField the field to set, from 0 to GetFieldCount() (p. ??)-1.
nBytes bytes of data being set.
pabyData the raw data being applied.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OFTBinary, and SetField().

13.44.3.26 void OGRFeature::SetField (int iField, OGRField * puValue)

Set field. The passed value OGRField (p.??) must be of exactly the same type as the target field, or
an application crash may occur. The passed value is copied, and will not be affected. It remains the
responsibility of the caller.

This method is the same as the C function OGR_F_SetFieldRaw() (p. ??).

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. ??)-1.

puValue the value to assign.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTBinary,
OFTDate, OFTDateTime, OFTInteger, OFTIntegerList, OFTReal, OFTRealList, OFTString, OFT-
StringList, and OFTTime.

13.44 OGRFeature Class Reference 157

13.44.3.27 void OGRFeature::SetField (int iField, char xx papszValues)

Set field to list of strings value. This method currently on has an effect of OFTStringList fields.
This method is the same as the C function OGR_F_SetFieldStringList() (p. ??).

Parameters:

iField the field to set, from O to GetFieldCount() (p. ??)-1.

papszValues the values to assign.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OFTStringList, and SetField().

13.44.3.28 void OGRFeature::SetField (int iField, int nCount, double * padfValues)

Set field to list of doubles value. This method currently on has an effect of OFTRealList fields.
This method is the same as the C function OGR_F_SetFieldDoubleList() (p. ??).

Parameters:

iField the field to set, from 0 to GetFieldCount() (p. ??)-1.
nCount the number of values in the list being assigned.

padfValues the values to assign.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OFTInteger, OFTIntegerList,
OFTReal, OFTRealList, and SetField().

13.44.3.29 void OGRFeature::SetField (int iField, int nCount, int x panValues)

Set field to list of integers value. This method currently on has an effect of OFTIntegerList fields.
This method is the same as the C function OGR_F_SetFieldIntegerList() (p. ??).

Parameters:

iField the field to set, from O to GetFieldCount() (p. ??)-1.
nCount the number of values in the list being assigned.

panValues the values to assign.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OFTInteger, OF TIntegerList,
OFTReal, OFTRealList, and SetField().

13.44.3.30 void OGRFeature::SetField (int iField, const char x pszValue)

Set field to string value. OFTInteger fields will be set based on an atoi() conversion of the string. OFTReal
fields will be set based on an atof() conversion of the string. Other field types may be unaffected.

This method is the same as the C function OGR_F_SetFieldString() (p. ??).

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. 2?)-1.

158 Class Documentation

pszValue the value to assign.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTDate, OFT-
DateTime, OFTInteger, OF TIntegerList, OFTReal, OFTRealList, OFTString, OFTTime, OGRParseDate(),
and SetField().

13.44.3.31 void OGRFeature::SetField (int iField, double dfValue)

Set field to double value. OFTInteger and OFTReal fields will be set directly. OFTString fields will be
assigned a string representation of the value, but not necessarily taking into account formatting constraints
on this field. Other field types may be unaffected.

This method is the same as the C function OGR_F_SetFieldDouble() (p. ??).

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. ??)-1.
dfValue the value to assign.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTInteger,
OFTIntegerList, OFTReal, OFTRealList, OFTString, and SetField().

13.44.3.32 void OGRFeature::SetField (int iField, int nValue)

Set field to integer value. OFTInteger and OFTReal fields will be set directly. OFTString fields will be
assigned a string representation of the value, but not necessarily taking into account formatting constraints
on this field. Other field types may be unaffected.

This method is the same as the C function OGR_F_SetFieldInteger() (p. ??).

Parameters:

iField the field to fetch, from O to GetFieldCount() (p. ??)-1.

nValue the value to assign.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTInteger,
OFTIntegerList, OFTReal, OFTRealList, and OFTString.

Referenced by Clone(), OGRGenSQLResultsLayer::GetFeature(), SetField(), and SetFrom().

13.44.3.33 OGRErr OGRFeature::SetFrom (OGRFeature * poSrcFeature, int + panMap, int
bForgiving = TRUE)

Set one feature from another. Overwrite the contents of this feature from the geometry and attributes of
another. The poSrcFeature does not need to have the same OGRFeatureDefn (p. ??). Field values are
copied according to the provided indices map. Field types do not have to exactly match. SetField() (p.??)
method conversion rules will be applied as needed. This is more efficient than OGR_F_SetFrom() (p.??)
in that this doesn’t lookup the fields by their names. Particularly useful when the field names don’t match.

This method is the same as the C function OGR_F_SetFromWithMap() (p. 2?).

Parameters:

poSrcFeature the feature from which geometry, and field values will be copied.

13.44 OGRFeature Class Reference 159

panMap Array of the indices of the feature’s fields stored at the corresponding index of the source
feature’s fields. A value of -1 should be used to ignore the source’s field. The array should not
be NULL and be as long as the number of fields in the source feature.

bForgiving TRUE if the operation should continue despite lacking output fields matching some of the
source fields.

Returns:

OGRERR_NONE if the operation succeeds, even if some values are not transferred, otherwise an error
code.

References GetFieldAsDouble(), GetField AsDoubleList(), GetFieldAsInteger(), GetFieldAsIntegerList(),
GetFieldAsString(), GetFieldCount(), GetFieldDefnRef(), GetGeometryRef(), GetRawFieldRef(), Get-
StyleString(), OGRFieldDefn::GetType(), IsFieldSet(), OFTDate, OFTDateTime, OFTInteger, OFTIn-
tegerList, OFTReal, OFTRealList, OFTString, OFTTime, SetFID(), SetField(), SetGeometry(), Set-
StyleString(), and UnsetField().

13.44.3.34 OGRErr OGRFeature::SetFrom (OGRFeature « poSrcFeature, int bForgiving = TRUE)

Set one feature from another. Overwrite the contents of this feature from the geometry and attributes of
another. The poSrcFeature does not need to have the same OGRFeatureDefn (p. ??). Field values are
copied by corresponding field names. Field types do not have to exactly match. SetField() (p. ??) method
conversion rules will be applied as needed.

This method is the same as the C function OGR_F_SetFrom() (p. ??).

Parameters:

poSrcFeature the feature from which geometry, and field values will be copied.

bForgiving TRUE if the operation should continue despite lacking output fields matching some of the
source fields.
Returns:

OGRERR_NONE if the operation succeeds, even if some values are not transferred, otherwise an error
code.

References GetFieldCount(), GetFieldDefnRef(), GetFieldIndex(), and OGRFieldDefn::GetNameRef().
Referenced by OGRDataSource::CopyLayer().

13.44.3.35 OGRErr OGRFeature::SetGeometry (OGRGeometry x poGeomlIn)

Set feature geometry. This method updates the features geometry, and operate exactly as SetGeometry-
Directly() (p. ??), except that this method does not assume ownership of the passed geometry, but instead
makes a copy of it.

This method is the same as the C function OGR_F_SetGeometry() (p. ??).

Parameters:

poGeomlIn new geometry to apply to feature. Passing NULL value here is correct and it will result in
deallocation of currently assigned geometry without assigning new one.

160 Class Documentation

Returns:
OGRERR_NONE if successful, or OGR_UNSUPPORTED_GEOMETRY_TYPE if the geometry
type is illegal for the OGRFeatureDefn (p. ??) (checking not yet implemented).

References OGRGeometry::clone().

Referenced by Clone(), and SetFrom().

13.44.3.36 OGRErr OGRFeature::SetGeometryDirectly (OGRGeometry « poGeomln)
Set feature geometry. This method updates the features geometry, and operate exactly as SetGeometry()
(p- ??), except that this method assumes ownership of the passed geometry.

This method is the same as the C function OGR_F_SetGeometryDirectly() (p. ??).

Parameters:

poGeomlIn new geometry to apply to feature. Passing NULL value here is correct and it will result in
deallocation of currently assigned geometry without assigning new one.

Returns:

OGRERR_NONE if successful, or OGR_UNSUPPORTED_GEOMETRY_TYPE if the geometry
type is illegal for the OGRFeatureDefn (p. ??) (checking not yet implemented).

13.44.3.37 void OGRFeature::SetStyleString (const char * pszString) [virtual]

Set feature style string. This method operate exactly as OGRFeature::SetStyleStringDirectly() (p. ??)
except that it does not assume ownership of the passed string, but instead makes a copy of it. This method
is the same as the C function OGR_F_SetStyleString() (p. 2?).

Parameters:

pszString the style string to apply to this feature, cannot be NULL.

Referenced by Clone(), OGRStyleMgr::SetFeatureStyleString(), and SetFrom().

13.44.3.38 void OGRFeature::SetStyleStringDirectly (char pszString) [virtual]

Set feature style string. This method operate exactly as OGRFeature::SetStyleString() (p. ??) except
that it assumes ownership of the passed string. This method is the same as the C function OGR_F_-
SetStyleStringDirectly() (p. ??).

Parameters:

pszString the style string to apply to this feature, cannot be NULL.

13.44.3.39 OGRGeometry * OGRFeature::StealGeometry ()

Take away ownership of geometry. Fetch the geometry from this feature, and clear the reference to the
geometry on the feature. This is a mechanism for the application to take over ownship of the geometry
from the feature without copying. Sort of an inverse to SetGeometryDirectly() (p. ??).

After this call the OGRFeature (p. ??) will have a NULL geometry.

13.44 OGRFeature Class Reference 161

Returns:

the pointer to the geometry.

13.44.3.40 void OGRFeature::UnsetField (int iField)

Clear a field, marking it as unset. This method is the same as the C function OGR_F_UnsetField() (p. ??).

Parameters:

iField the field to unset.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTBinary,
OFTIntegerList, OFTRealList, OFTString, and OFTStringList.

Referenced by OGRGenSQLResultsLayer::GetFeature(), and SetFrom().

The documentation for this class was generated from the following files:

¢ ogr_feature.h
* ogrfeature.cpp

162

Class Documentation

13.45 OGRFeatureDefn Class Reference

#include <ogr_feature.h>

Public Member Functions

* OGRFeatureDefn (const char *pszName=NULL)

Constructor.

¢ const char x GetName ()
Get name of this OGRFeatureDefn (p.??).

¢ int GetFieldCount ()

Fetch number of fields on this feature.

¢ OGRFieldDefn x GetFieldDefn (int i)
Fetch field definition.

¢ int GetFieldIndex (const char *)
Find field by name.

¢ void AddFieldDefn (OGRFieldDefn)
Add a new field definition.

¢ OGRErr DeleteFieldDefn (int iField)

Delete an existing field definition.

* OGRE:r ReorderFieldDefns (int xpanMap)

Reorder the field definitions in the array of the feature definition.

* OGRwkbGeometryType GetGeomType ()
Fetch the geometry base type.

* void SetGeomType (OGRwkbGeometryType)
Assign the base geometry type for this layer.

¢ OGRFeatureDefn * Clone ()

Create a copy of this feature definition.

¢ int Reference ()

Increments the reference count by one.

¢ int Dereference ()

Decrements the reference count by one.

¢ int GetReferenceCount ()

Fetch current reference count.

¢ void Release ()

13.45 OGRFeatureDefn Class Reference 163

Drop a reference to this object, and destroy if no longer referenced.

¢ int IsGeometrylgnored ()

Determine whether the geometry can be omitted when fetching features.

¢ void SetGeometrylgnored (int bIgnore)

Set whether the geometry can be omitted when fetching features.

« int IsStyleIgnored ()

Determine whether the style can be omitted when fetching features.

* void SetStyleIgnored (int bIgnore)

Set whether the style can be omitted when fetching features.

13.45.1 Detailed Description

Definition of a feature class or feature layer.

This object contains schema information for a set of OGRFeatures. In table based systems, an OGRFea-
tureDefn (p. ??) is essentially a layer. In more object oriented approaches (such as SF CORBA) this can
represent a class of features but doesn’t necessarily relate to all of a layer, or just one layer.

This object also can contain some other information such as a name, the base geometry type and potentially
other metadata.

It is reasonable for different translators to derive classes from OGRFeatureDefn (p. ??) with additional
translator specific information.

13.45.2 Constructor & Destructor Documentation
13.45.2.1 OGRFeatureDefn::OGRFeatureDefn (const char * pszName = NULL)

Constructor. The OGRFeatureDefn (p. ??) maintains a reference count, but this starts at zero. It is mainly
intended to represent a count of OGRFeature’s based on this definition.

This method is the same as the C function OGR_FD_Create() (p. ??).

Parameters:

pszName the name to be assigned to this layer/class. It does not need to be unique.

References wkbUnknown.

Referenced by Clone().

13.45.3 Member Function Documentation
13.45.3.1 void OGRFeatureDefn::AddFieldDefn (OGRFieldDefn « poNewDefn)

Add a new field definition. To add a new field definition to a layer definition, do not use this function
directly, but use OGRLayer::CreateField() (p. ??) instead.

164 Class Documentation

This method should only be called while there are no OGRFeature (p. ??) objects in existance based on this
OGRFeatureDefn (p. ??). The OGRFieldDefn (p. ??) passed in is copied, and remains the responsibility
of the caller.

This method is the same as the C function OGR_FD_AddFieldDefn() (p. ??).

Parameters:

poNewDefn the definition of the new field.

Referenced by Clone().

13.45.3.2 OGRFeatureDefn + OGRFeatureDefn::Clone ()
Create a copy of this feature definition. Creates a deep copy of the feature definition.

Returns:

the copy.

References AddFieldDefn(), GetFieldCount(), GetFieldDefn(), GetGeomType(), GetName(), OGRFea-
tureDefn(), and SetGeomType().

13.45.3.3 OGRErr OGRFeatureDefn::DeleteFieldDefn (int iField)

Delete an existing field definition. To delete an existing field definition from a layer definition, do not use
this function directly, but use OGRLayer::DeleteField() (p. ??) instead.

This method should only be called while there are no OGRFeature (p. ??) objects in existance based on
this OGRFeatureDefn (p. 2?).

This method is the same as the C function OGR_FD_DeleteFieldDefn() (p. ??).

Parameters:

iField the index of the field defintion.

Returns:

OGRERR_NONE in case of success.

Since:

OGR 1.9.0

13.45.3.4 int OGRFeatureDefn::Dereference () [inline]

Decrements the reference count by one. This method is the same as the C function OGR_FD_-
Dereference() (p. ??).

Returns:

the updated reference count.

Referenced by Release().

13.45 OGRFeatureDefn Class Reference 165

13.45.3.5 int OGRFeatureDefn::GetFieldCount () [inline]

Fetch number of fields on this feature. This method is the same as the C function OGR_FD_-
GetFieldCount() (p. ??).

Returns:

count of fields.

Referenced by Clone(), OGRFeature::Clone(), OGRDataSource::CopyLayer(), OGRFeature::Equal(),
OGRDataSource::ExecuteSQL(), OGRFeature::GetFieldAsDouble(), OGRFeature::GetFieldAsInteger(),
OGRFeature::GetFieldAsString(), OGRFeature::IsFieldSet(), OGRFeature::OGRFeature(), OGR-
Layer::ReorderField(), and OGRLayer::SetIgnoredFields().

13.45.3.6 OGRFieldDefn * OGRFeatureDefn::GetFieldDefn (int iField)

Fetch field definition. This method is the same as the C function OGR_FD_GetFieldDefn() (p. ??).

Starting with GDAL 1.7.0, this method will also issue an error if the index is not valid.

Parameters:

iField the field to fetch, between 0 and GetFieldCount() (p. ??)-1.

Returns:

a pointer to an internal field definition object or NULL if invalid index. This object should not be
modified or freed by the application.

Referenced by Clone(), OGRDataSource::CopyLayer(), OGRFeature::DumpReadable(), OGR-
Feature::Equal(), = OGRDataSource::ExecuteSQL(), = OGRFeature::GetFieldAsBinary(), = OGRFea-
ture::GetFieldAsDateTime(), OGRFeature::GetFieldAsDouble(), OGRFeature::GetFieldAsDoubleList(),
OGRPFeature::GetFieldAsInteger(), OGRFeature::GetFieldAsIntegerList(), OGRFea-
ture::GetFieldAsString(), = OGRFeature::GetFieldAsStringList(), = OGRFeature::SetField(), = OGR-
Layer::SetlgnoredFields(), and OGRFeature::UnsetField().

13.45.3.7 int OGRFeatureDefn::GetFieldIndex (const char x pszFieldName)

Find field by name. The field index of the first field matching the passed field name (case insensitively) is
returned.

This method is the same as the C function OGR_FD_GetFieldIndex() (p. ??).

Parameters:

pszFieldName the field name to search for.

Returns:

the field index, or -1 if no match found.

Referenced by OGRDataSource::CopyLayer(), and OGRLayer::SetlgnoredFields().

166 Class Documentation

13.45.3.8 OGRwkbGeometryType OGRFeatureDefn::GetGeomType () [inline]

Fetch the geometry base type. Note that some drivers are unable to determine a specific geometry type for a
layer, in which case wkbUnknown is returned. A value of wkbNone indicates no geometry is available for
the layer at all. Many drivers do not properly mark the geometry type as 25D even if some or all geometries
are in fact 25D. A few (broken) drivers return wkbPolygon for layers that also include wkbMultiPolygon.

This method is the same as the C function OGR_FD_GetGeomType() (p. ??).

Returns:

the base type for all geometry related to this definition.

Referenced by Clone(), OGRDataSource::CopyLayer(), and OGRLayer::GetGeomType().

13.45.3.9 const char x OGRFeatureDefn::GetName () [inline]

Get name of this OGRFeatureDefn (p.??). This method is the same as the C function OGR_FD_-
GetName() (p. 2?).

Returns:

the name. This name is internal and should not be modified, or freed.

Referenced by Clone(), OGRSFDriver::CopyDataSource(), OGRDataSource::CopyLayer(), OGRFea-
ture::DumpReadable(), and OGRLayer::GetName().

13.45.3.10 int OGRFeatureDefn::GetReferenceCount () [inline]

Fetch current reference count. This method is the same as the C function OGR_FD_GetReferenceCount()
(P-??7).

Returns:

the current reference count.

13.45.3.11 int OGRFeatureDefn::IsGeometrylgnored () [inline]

Determine whether the geometry can be omitted when fetching features. This method is the same as the C
function OGR_FD_IsGeometrylgnored() (p. ??).

Returns:

ignore state

13.45.3.12 int OGRFeatureDefn::IsStyleIgnored () [inline]

Determine whether the style can be omitted when fetching features. This method is the same as the C
function OGR_FD_IsStyleIgnored() (p. 2?).

Returns:

ignore state

13.45 OGRFeatureDefn Class Reference 167

13.45.3.13 int OGRFeatureDefn::Reference () [inline]
Increments the reference count by one. The reference count is used keep track of the number of OGRFea-

ture (p. ??) objects referencing this definition.

This method is the same as the C function OGR_FD_Reference() (p. 2?).

Returns:

the updated reference count.

Referenced by OGRFeature::OGRFeature().

13.45.3.14 OGRErr OGRFeatureDefn::ReorderFieldDefns (int x panMap)
Reorder the field definitions in the array of the feature definition. To reorder the field definitions in a layer
definition, do not use this function directly, but use OGR_L_ReorderFields() (p. ??) instead.

This method should only be called while there are no OGRFeature (p. ??) objects in existance based on
this OGRFeatureDefn (p. 2?).

This method is the same as the C function OGR_FD_ReorderFieldDefns().

Parameters:

panMap an array of GetFieldCount() (p. ??) elements which is a permutation of [0, GetField Count()
(p- 7?)-1]. panMap is such that, for each field definition at position i after reordering, its position
before reordering was panMapl[i].

Returns:

OGRERR_NONE in case of success.

Since:

OGR 1.9.0

13.45.3.15 void OGRFeatureDefn::SetGeometrylgnored (int bIgnore) [inline]

Set whether the geometry can be omitted when fetching features. This method is the same as the C function
OGR_FD_SetGeometrylgnored() (p. ??).

Parameters:

blgnore ignore state

Referenced by OGRLayer::SetlgnoredFields().

13.45.3.16 void OGRFeatureDefn::SetGeomType (OGRwkbGeometryType eNewType)

Assign the base geometry type for this layer. All geometry objects using this type must be of the defined
type or a derived type. The default upon creation is wkbUnknown which allows for any geometry type.
The geometry type should generally not be changed after any OGRFeatures have been created against this
definition.

This method is the same as the C function OGR_FD_SetGeomType() (p. ??).

168 Class Documentation

Parameters:

eNewType the new type to assign.

Referenced by Clone().

13.45.3.17 void OGRFeatureDefn::SetStyleIgnored (int bIgnore) [inline]

Set whether the style can be omitted when fetching features. This method is the same as the C function
OGR_FD_SetStyleIgnored() (p. 2?).

Parameters:

blgnore ignore state

Referenced by OGRLayer::SetlgnoredFields().

The documentation for this class was generated from the following files:

¢ ogr_feature.h
* ogrfeaturedefn.cpp

13.46 OGRFeatureQuery Class Reference 169

13.46 OGRFeatureQuery Class Reference

Public Member Functions

¢ char *x GetUsedFields ()

13.46.1 Member Function Documentation
13.46.1.1 char xx OGRFeatureQuery::GetUsedFields ()

Returns lists of fields in expression.

All attribute fields are used in the expression of this feature query are returned as a StringList of field names.
This function would primarily be used within drivers to recognise special case conditions depending only
on attribute fields that can be very efficiently fetched.

NOTE: If any fields in the expression are from tables other than the primary table then NULL is returned
indicating an error. In succesful use, no non-empty expression should return an empty list.

Returns:

list of field names. Free list with CSLDestroy() (p. ??) when no longer required.

The documentation for this class was generated from the following files:

¢ ogr_feature.h
* ogrfeaturequery.cpp

170

Class Documentation

13.47 OGRField Union Reference

#include <ogr_core.h>

13.47.1 Detailed Description

OGRFeature (p. ??) field attribute value union.

The documentation for this union was generated from the following file:

* ogr_core.h

13.48 OGRFieldDefn Class Reference 171

13.48 OGRFieldDefn Class Reference

#include <ogr_feature.h>

Public Member Functions

* OGRFieldDefn (const char x, OGRFieldType)

Constructor.

¢ OGRFieldDefn (OGRFieldDefn x)

Constructor.

¢ void SetName (const char)
Reset the name of this field.

¢ const char * GetNameRef ()
Fetch name of this field.

* OGRFieldType GetType ()
Fetch type of this field.

* void SetType (OGRFieldType eTypeln)

Set the type of this field. This should never be done to an OGRFieldDefn (p.??) that is already part of an
OGRFeatureDefn (p.??).

* OGRJustification GetJustify ()
Get the justification for this field.

* void SetJustify (OGRJustification eJustifyIn)
Set the justification for this field.

¢ int GetWidth ()
Get the formatting width for this field.

¢ void SetWidth (int nWidthIn)
Set the formatting width for this field in characters.

¢ int GetPrecision ()

Get the formatting precision for this field. This should normally be zero for fields of types other than
OFTReal.

¢ void SetPrecision (int nPrecisionIn)

Set the formatting precision for this field in characters.

¢ void Set (const char *, OGRFieldType, int=0, int=0, OGRJustification=0JUndefined)

Set defining parameters for a field in one call.

¢ void SetDefault (const OGRField)
Set default field value.

172 Class Documentation

¢ int IsIgnored ()

Return whether this field should be omitted when fetching features.

* void SetIgnored (int bIgnore)
Set whether this field should be omitted when fetching features.

Static Public Member Functions

* static const char * GetFieldTypeName (OGRFieldType)
Fetch human readable name for a field type.

13.48.1 Detailed Description

Definition of an attribute of an OGRFeatureDefn (p. ??).

13.48.2 Constructor & Destructor Documentation
13.48.2.1 OGRFieldDefn::OGRFieldDefn (const char x pszNameln, OGRFieldType eTypeln)

Constructor.

Parameters:

pszNameln the name of the new field.

eTypeln the type of the new field.

13.48.2.2 OGRFieldDefn::OGRFieldDefn (OGRFieldDefn « poPrototype)
Constructor. Create by cloning an existing field definition.

Parameters:

poPrototype the field definition to clone.

References GetJustify(), GetNameRef(), GetPrecision(), GetType(), GetWidth(), SetJustify(), SetPreci-
sion(), and SetWidth().

13.48.3 Member Function Documentation
13.48.3.1 const char x OGRFieldDefn::GetFieldTypeName (OGRFieldType eType) [static]

Fetch human readable name for a field type. This static method is the same as the C function OGR_-
GetFieldTypeName() (p. 2?).

Parameters:

eType the field type to get name for.

13.48 OGRFieldDefn Class Reference 173

Returns:

pointer to an internal static name string. It should not be modified or freed.

References OFTBinary, OFTDate, OFTDateTime, OFTInteger, OF TIntegerList, OFTReal, OFTRealList,
OFTString, OFTStringList, and OFTTime.

Referenced by OGRFeature::DumpReadable(), and OGR_GetFieldTypeName().

13.48.3.2 OGRJustification OGRFieldDefn::GetJustify () [inline]

Get the justification for this field. This method is the same as the C function OGR_FId_GetJustify()
(P.??).

Returns:

the justification.

Referenced by OGRFieldDefn().

13.48.3.3 const char * OGRFieldDefn::GetNameRef () [inline]

Fetch name of this field. This method is the same as the C function OGR_Fld_GetNameRef() (p. ??).

Returns:

pointer to an internal name string that should not be freed or modified.

Referenced by OGRDataSource::CopyLayer(), OGRFeature::DumpReadable(), OGRData-
Source::ExecuteSQL(), OGRFieldDefn(), and OGRFeature::SetFrom().

13.48.3.4 int OGRFieldDefn::GetPrecision () [inline]

Get the formatting precision for this field. This should normally be zero for fields of types other than
OFTReal. This method is the same as the C function OGR_FId_GetPrecision() (p. ??).

Returns:

the precision.

Referenced by OGRFeature::GetFieldAsString(), and OGRFieldDefn().

13.48.3.5 OGRFieldType OGRFieldDefn::GetType () [inline]

Fetch type of this field. This method is the same as the C function OGR_FIld_GetType() (p. 2?).

Returns:

field type.
Referenced by OGRPFeature::DumpReadable(), OGRFeature::Equal(), OGRData-
Source::ExecuteSQL(), OGRFeature::GetFieldAsBinary(), OGRFeature::GetFieldAsDateTime(),
OGRFeature::GetField AsDouble(), OGRPFeature::GetField AsDoubleList(), OGRFea-

ture::GetFieldAsInteger(), OGRFeature::GetFieldAsIntegerList(), ~OGRFeature::GetFieldAsString(),
OGRFeature::GetField AsStringList(), OGRFieldDefn(), OGRFeature::SetField(), OGRFea-
ture::SetFrom(), and OGRFeature::UnsetField().

174 Class Documentation

13.48.3.6 int OGRFieldDefn::GetWidth () [inline]

Get the formatting width for this field. This method is the same as the C function OGR_Fld_GetWidth()
(P-?7).

Returns:

the width, zero means no specified width.

Referenced by OGRFeature::GetFieldAsString(), and OGRFieldDefn().

13.48.3.7 int OGRFieldDefn::IsIgnored () [inline]

Return whether this field should be omitted when fetching features. This method is the same as the C
function OGR_FId_IsIgnored() (p. ??).

Returns:

ignore state

13.48.3.8 void OGRFieldDefn::Set (const char * pszNameln, OGRFieldType eTypeln, int
nWidthln = 0, int nPrecisionIn = 0, OGR Justification eJustifyIn = 0OJUndefined)

Set defining parameters for a field in one call. This method is the same as the C function OGR_FIld_Set()
(P-?7).
Parameters:

pszNameln the new name to assign.

eTypeln the new type (one of the OFT values like OFTInteger).

nWidthIn the preferred formatting width. Defaults to zero indicating undefined.
nPrecisionIn number of decimals places for formatting, defaults to zero indicating undefined.
eJustifyIn the formatting justification (OJLeft or OJRight), defaults to OJUndefined.

References SetJustify(), SetName(), SetPrecision(), SetType(), and SetWidth().

13.48.3.9 void OGRFieldDefn::SetDefault (const OGRField « puDefaultin)

Set default field value. Currently use of OGRFieldDefn (p. ??) "defaults" is discouraged. This feature may
be fleshed out in the future.

References OFTInteger, OFTReal, and OFTString.

13.48.3.10 void OGRFieldDefn::SetIgnored (int ignore) [inline]

Set whether this field should be omitted when fetching features. This method is the same as the C function
OGR_Fld_SetIgnored() (p.??).

Parameters:

ignore ignore state

Referenced by OGRLayer::SetlgnoredFields().

13.48 OGRFieldDefn Class Reference 175

13.48.3.11 void OGRFieldDefn::SetJustify (OGRJustification eJustify) [inline]

Set the justification for this field. This method is the same as the C function OGR_FId_SetJustify() (p. ??).

Parameters:

eJustify the new justification.

Referenced by OGRFieldDefn(), and Set().

13.48.3.12 void OGRFieldDefn::SetName (const char * pszNameln)
Reset the name of this field. This method is the same as the C function OGR_FId_SetName() (p. ??).

Parameters:

pszNameln the new name to apply.

Referenced by Set().

13.48.3.13 void OGRFieldDefn::SetPrecision (int nPrecision) [inline]

Set the formatting precision for this field in characters. This should normally be zero for fields of types
other than OFTReal.

This method is the same as the C function OGR_FId_SetPrecision() (p. 2?).

Parameters:

nPrecision the new precision.

Referenced by OGRFieldDefn(), and Set().

13.48.3.14 void OGRFieldDefn::SetType (OGRFieldType eType) [inline]

Set the type of this field. This should never be done to an OGRFieldDefn (p. ??) that is already part of an
OGRFeatureDefn (p. ??). This method is the same as the C function OGR_FId_SetType() (p. ??).

Parameters:

eType the new field type.

Referenced by Set().

13.48.3.15 void OGRFieldDefn::SetWidth (int nWidth) [inline]

Set the formatting width for this field in characters. This method is the same as the C function OGR_FId_-
SetWidth() (p. ??).

Parameters:

nWidth the new width.

176 Class Documentation

Referenced by OGRFieldDefn(), and Set().

The documentation for this class was generated from the following files:

* ogr_feature.h
* ogrfielddefn.cpp

13.49 OGRGenSQLResultsLayer Class Reference 177

13.49 OGRGenSQLResultsLayer Class Reference

Inheritance diagram for OGRGenSQLResultsLayer::

‘ OGRLayer ‘

T

\ OGRGenSQL ResultsL ayer \

Public Member Functions

« virtual OGRGeometry x GetSpatialFilter ()

This method returns the current spatial filter for this layer.

* virtual void ResetReading ()

Reset feature reading to start on the first feature.

¢ virtual OGRFeature * GetNextFeature ()

Fetch the next available feature from this layer.

* virtual OGRErr SetNextByIndex (long nIndex)

Move read cursor to the nlndex’th feature in the current resultset.

« virtual OGRFeature * GetFeature (long nFID)
Fetch a feature by its identifier.

¢ virtual OGRFeatureDefn x GetLayerDefn ()

Fetch the schema information for this layer.

« virtual OGRSpatialReference « GetSpatialRef ()

Fetch the spatial reference system for this layer.

e virtual int GetFeatureCount (int bForce=TRUE)

Fetch the feature count in this layer.

« virtual OGRErr GetExtent (OGREnvelope +psExtent, int bForce=TRUE)
Fetch the extent of this layer.

« virtual int TestCapability (const char x)
Test if this layer supported the named capability.

13.49.1 Member Function Documentation

13.49.1.1 OGRErr OGRGenSQLResultsLayer::GetExtent (OGREnvelope * psExtent, int bForce
=TRUE) [virtual]

Fetch the extent of this layer. Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and
it would be expensive to establish the extent then OGRERR_FAILURE will be returned indicating that the

178 Class Documentation

extent isn’t know. If bForce is TRUE then some implementations will actually scan the entire layer once to
compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is
safer to call GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents
could be collected.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetExtent() (p. ??).

Parameters:
psExtent the structure in which the extent value will be returned.

bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns:

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented from OGRLayer (p.??).
References OGRLayer::GetExtent().

13.49.1.2 OGRFeature * OGRGenSQLResultsLayer::GetFeature (long nFID) [virtuall]

Fetch a feature by its identifier. This function will attempt to read the identified feature. The nFID value
cannot be OGRNulIFID. Success or failure of this operation is unaffected by the spatial or attribute filters.

If this method returns a non-NULL feature, it is guaranteed that its feature id (OGRFeature::GetFID()
(p- ?7?)) will be the same as nFID.

Use OGRLayer::TestCapability(OLCRandomRead) to establish if this layer supports efficient random ac-
cess reading via GetFeature() (p.??); however, the call should always work if the feature exists as a
fallback implementation just scans all the features in the layer looking for the desired feature.

Sequential reads are generally considered interrupted by a GetFeature() (p. ??) call.
The returned feature should be free with OGRFeature::DestroyFeature() (p. ??).
This method is the same as the C function OGR_L_GetFeature() (p. ??).

Parameters:

nFID the feature id of the feature to read.

Returns:

a feature now owned by the caller, or NULL on failure.

Reimplemented from OGRLayer (p.??).

References OGRFeature::Clone(), OGRLayer::GetFeature(), OGRFeature::SetFID(), OGRFea-
ture::SetField(), and OGRFeature::UnsetField().

Referenced by GetNextFeature().

13.49 OGRGenSQLResultsLayer Class Reference 179

13.49.1.3 int OGRGenSQLResultsLayer::GetFeatureCount (int bForce = TRUE) [virtual]

Fetch the feature count in this layer. Returns the number of features in the layer. For dynamic databases
the count may not be exact. If bForce is FALSE, and it would be expensive to establish the feature count a
value of -1 may be returned indicating that the count isn’t know. If bForce is TRUE some implementations
will actually scan the entire layer once to count objects.

The returned count takes the spatial filter into account.
Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetFeatureCount() (p. ??).

Parameters:

bForce Flag indicating whether the count should be computed even if it is expensive.

Returns:

feature count, -1 if count not known.

Reimplemented from OGRLayer (p.??).
References OGRLayer::GetFeatureCount().

13.49.1.4 OGRFeatureDefn x OGRGenSQLResultsLayer::GetLayerDefn () [virtual]

Fetch the schema information for this layer. The returned OGRFeatureDefn (p.??) is owned by the
OGRLayer (p.??), and should not be modified or freed by the application. It encapsulates the attribute
schema of the features of the layer.

This method is the same as the C function OGR_L_GetLayerDefn() (p. 2?).

Returns:

feature definition.

Implements OGRLayer (p.??).

13.49.1.5 OGRFeature * OGRGenSQLResultsLayer::GetNextFeature () [virtual]

Fetch the next available feature from this layer. The returned feature becomes the responsiblity of the caller
to delete with OGRFeature::DestroyFeature() (p.??). It is critical that all features associated with an
OGRLayer (p. ??) (more specifically an OGRFeatureDefn (p. ??)) be deleted before that layer/datasource
is deleted.

Only features matching the current spatial filter (set with SetSpatialFilter() (p. ??)) will be returned.

This method implements sequential access to the features of a layer. The ResetReading() (p. ??) method
can be used to start at the beginning again.

This method is the same as the C function OGR_L_GetNextFeature() (p. ??).

Returns:

a feature, or NULL if no more features are available.

Implements OGRLayer (p.??).
References GetFeature(), and OGRLayer::GetNextFeature().

180 Class Documentation

13.49.1.6 OGRGeometry x OGRGenSQLResultsLayer::GetSpatialFilter () [virtual]
This method returns the current spatial filter for this layer. The returned pointer is to an internally owned

object, and should not be altered or deleted by the caller.
This method is the same as the C function OGR_L_GetSpatialFilter() (p. ??).

Returns:

spatial filter geometry.

Reimplemented from OGRLayer (p.??).

13.49.1.7 OGRSpatialReference x+ OGRGenSQLResultsLayer::GetSpatialRef () [virtual]
Fetch the spatial reference system for this layer. The returned object is owned by the OGRLayer (p. ??)

and should not be modified or freed by the application.
This method is the same as the C function OGR_L_GetSpatialRef() (p. 2?).

Returns:

spatial reference, or NULL if there isn’t one.

Reimplemented from OGRLayer (p.??).
References OGRLayer::GetSpatialRef().

13.49.1.8 void OGRGenSQLResultsLayer::ResetReading () [virtual]

Reset feature reading to start on the first feature. This affects GetNextFeature() (p. 2?).
This method is the same as the C function OGR_L_ResetReading() (p. ??).
Implements OGRLayer (p.??).

References OGRLayer::ResetReading(), OGRLayer::SetAttributeFilter(), and OGR-
Layer::SetSpatialFilter().

13.49.1.9 OGRErr OGRGenSQLResultsLayer::SetNextByIlndex (long nlndex) [virtuall]

Move read cursor to the nIndex’th feature in the current resultset. This method allows positioning of a layer
such that the GetNextFeature() (p. ??) call will read the requested feature, where nlndex is an absolute
index into the current result set. So, setting it to 3 would mean the next feature read with GetNextFeature()
(p- ??) would have been the 4th feature to have been read if sequential reading took place from the beginning
of the layer, including accounting for spatial and attribute filters.

Only in rare circumstances is SetNextByIndex() (p.??) efficiently implemented. In all other cases the
default implementation which calls ResetReading() (p. ??) and then calls GetNextFeature() (p. ??) nlndex
times is used. To determine if fast seeking is available on the current layer use the TestCapability() (p. ??)
method with a value of OLCFastSetNextByIndex.

This method is the same as the C function OGR_L_SetNextByIndex() (p. ??).

Parameters:

nlndex the index indicating how many steps into the result set to seek.

13.49 OGRGenSQLResultsLayer Class Reference 181

Returns:

OGRERR_NONE on success or an error code.

Reimplemented from OGRLayer (p.??).
References OGRLayer::SetNextByIndex().

13.49.1.10 int OGRGenSQLResultsLayer::TestCapability (const char x pszCap) [virtuall]

Test if this layer supported the named capability. The capability codes that can be tested are represented as
strings, but #defined constants exists to ensure correct spelling. Specific layer types may implement class
specific capabilities, but this can’t generally be discovered by the caller.

* OLCRandomRead / "RandomRead": TRUE if the GetFeature() (p. ??) method is implemented in
an optimized way for this layer, as opposed to the default implementation using ResetReading()
(p- ??) and GetNextFeature() (p. ??) to find the requested feature id.

¢ OLCSequentialWrite / "SequentialWrite": TRUE if the CreateFeature() (p. ??) method works for
this layer. Note this means that this particular layer is writable. The same OGRLayer (p. ??) class
may returned FALSE for other layer instances that are effectively read-only.

* OLCRandomWerite / "RandomWrite": TRUE if the SetFeature() (p. ??) method is operational on
this layer. Note this means that this particular layer is writable. The same OGRLayer (p. ??) class
may returned FALSE for other layer instances that are effectively read-only.

* OLCFastSpatialFilter / "FastSpatialFilter": TRUE if this layer implements spatial filtering effi-
ciently. Layers that effectively read all features, and test them with the OGRFeature (p.??) in-
tersection methods should return FALSE. This can be used as a clue by the application whether it
should build and maintain its own spatial index for features in this layer.

* OLCFastFeatureCount / "FastFeatureCount": TRUE if this layer can return a feature count (via
GetFeatureCount() (p. ??)) efficiently ... ie. without counting the features. In some cases this will
return TRUE until a spatial filter is installed after which it will return FALSE.

* OLCFastGetExtent / "FastGetExtent": TRUE if this layer can return its data extent (via GetEx-
tent() (p.??)) efficiently ... ie. without scanning all the features. In some cases this will return
TRUE until a spatial filter is installed after which it will return FALSE.

* OLCFastSetNextByIndex / "FastSetNextByIndex": TRUE if this layer can perform the Set-
NextByIndex() (p. ??) call efficiently, otherwise FALSE.

* OLCCreateField / "CreateField": TRUE if this layer can create new fields on the current layer using
CreateField() (p. ??), otherwise FALSE.

* OLCDeleteField / "DeleteField": TRUE if this layer can delete existing fields on the current layer
using DeleteField() (p. ??), otherwise FALSE.

* OLCReorderFields / "ReorderFields": TRUE if this layer can reorder existing fields on the current
layer using ReorderField() (p. ??) or ReorderFields() (p. ??), otherwise FALSE.

¢ OLCAlterFieldDefn / "AlterFieldDefn": TRUE if this layer can alter the definition of an existing
field on the current layer using AlterFieldDefn() (p. ??), otherwise FALSE.

* OLCDeleteFeature / "DeleteFeature": TRUE if the DeleteFeature() (p. ??) method is supported on
this layer, otherwise FALSE.

182 Class Documentation

¢ OLCStringsAsUTF8 / "StringsAsUTF8": TRUE if values of OFTString fields are assured to be in
UTEF-8 format. If FALSE the encoding of fields is uncertain, though it might still be UTF-8.

¢ OLCTransactions/ "Transactions": TRUE if the StartTransaction(), CommitTransaction() and Roll-
backTransaction() methods work in a meaningful way, otherwise FALSE.

* OLClIgnoreFields / "IgnoreFields": TRUE if fields, geometry and style will be omitted when fetch-
ing features as set by SetIgnoredFields() (p. ??) method.

This method is the same as the C function OGR_L_TestCapability() (p. ??).

Parameters:

pszCap the name of the capability to test.

Returns:

TRUE if the layer has the requested capability, or FALSE otherwise. OGRLayers will return FALSE
for any unrecognised capabilities.

Implements OGRLayer (p.??).
References OGRLayer::TestCapability().

The documentation for this class was generated from the following files:

* ogr_gensql.h
* ogr_gensql.cpp

13.50 OGRGeometry Class Reference

183

13.50 OGRGeometry Class Reference

#include <ogr_geometry.h>Inheritance diagram for OGRGeometry::

| OGRGeometry |
f
[[[\
| OGRCurve | |OGRGeometryCoIIection| | OGRPoint | | OGRSurface \
i | f ‘ T
| OGRLineString | | OGRMultiLineString | | OGRMultiPoint | | OGRMultiPolygon | | OGRPolygon \

[

| OGRLinearRing |

Public Member Functions

* virtual int getDimension () const =0

Get the dimension of this object.

« virtual int getCoordinateDimension () const

Get the dimension of the coordinates in this object.

* virtual OGRBoolean IsEmpty () const =0

Returns TRUE (non-zero) if the object has no points.

e virtual OGRBoolean IsValid () const

Test if the geometry is valid.

« virtual OGRBoolean IsSimple () const

Test if the geometry is simple.

« virtual OGRBoolean IsRing () const

Test if the geometry is a ring.

e virtual void empty ()=0

Clear geometry information. This restores the geometry to it’s initial state after construction, and before

assignment of actual geometry.

¢ virtual OGRGeometry * clone () const =0

Make a copy of this object.

* virtual void getEnvelope (OGREnvelope xpsEnvelope) const =0

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

« virtual void getEnvelope (OGREnvelope3D xpsEnvelope) const =0

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

e virtual int WkbSize () const =0

Returns size of related binary representation.

¢ virtual OGRErr importFromWkb (unsigned char x, int=-1)=0

184

Class Documentation

Assign geometry from well known binary data.

virtual OGRErr exportToWkb (OGRwkbByteOrder, unsigned char *) const =0

Convert a geometry into well known binary format.

virtual OGRErr importFromWKkt (char sxppszInput)=0

Assign geometry from well known text data.

virtual OGRErr exportToWKkt (char xxppszDstText) const =0

Convert a geometry into well known text format.

virtual OGRwkbGeometryType getGeometryType () const =0
Fetch geometry type.

virtual const char * getGeometryName () const =0

Fetch WKT name for geometry type.

virtual void dumpReadable (FILE x, const char *+=NULL, char #xpapszOptions=NULL) const

Dump geometry in well known text format to indicated output file.

virtual void flattenTo2D ()=0

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

virtual char * exportToGML (const char xconst xpapszOptions=NULL) const

Convert a geometry into GML format.

virtual char x exportToKML () const

Convert a geometry into KML format.

virtual char x exportToJson () const

Convert a geometry into GeoJSON format.

virtual void closeRings ()

Force rings to be closed.

virtual void setCoordinateDimension (int nDimension)

Set the coordinate dimension.

void assignSpatialReference (OGRSpatialReference «poSR)

Assign spatial reference to this object.

OGRSpatialReference * getSpatialReference (void) const

Returns spatial reference system for object.

virtual OGRErr transform (OGRCoordinateTransformation xpoCT)=0

Apply arbitrary coordinate transformation to geometry.

OGRErr transformTo (OGRSpatialReference «poSR)

Transform geometry to new spatial reference system.

13.50 OGRGeometry Class Reference 185

* virtual void segmentize (double dfMaxLength)

Modify the geometry such it has no segment longer then the given distance.

* virtual OGRBoolean Intersects (OGRGeometry) const

Do these features intersect?

* virtual OGRBoolean Equals (OGRGeometry *) const =0

Returns TRUE if two geometries are equivalent.

« virtual OGRBoolean Disjoint (const OGRGeometry) const

Test for disjointness.

¢ virtual OGRBoolean Touches (const OGRGeometry x*) const

Test for touching.

« virtual OGRBoolean Crosses (const OGRGeometry) const

Test for crossing.

« virtual OGRBoolean Within (const OGRGeometry) const

Test for containment.

* virtual OGRBoolean Contains (const OGRGeometry *) const

Test for containment.

* virtual OGRBoolean Overlaps (const OGRGeometry) const

Test for overlap.

¢ virtual OGRGeometry « Boundary () const

Compute boundary.

« virtual double Distance (const OGRGeometry x) const

Compute distance between two geometries.

¢ virtual OGRGeometry x ConvexHull () const

Compute convex hull.

« virtual OGRGeometry * Buffer (double dfDist, int nQuadSegs=30) const
Compute buffer of geometry.

¢ virtual OGRGeometry = Intersection (const OGRGeometry) const

Compute intersection.

* virtual OGRGeometry « Union (const OGRGeometry *) const

Compute union.

¢ virtual OGRGeometry « UnionCascaded () const

Compute union using cascading.

¢ virtual OGRGeometry * Difference (const OGRGeometry) const

Compute difference.

186 Class Documentation

¢ virtual OGRGeometry *x SymDifference (const OGRGeometry *) const

Compute symmetric difference.

¢ virtual OGRErr Centroid (OGRPoint «poPoint) const

Compute the geometry centroid.

¢ virtual OGRGeometry x Simplify (double dTolerance) const
Simplify the geometry.

* OGRGeometry * SimplifyPreserveTopology (double dTolerance) const
Simplify the geometry while preserving topology.

¢ virtual OGRGeometry * Polygonize () const

Polygonizes a set of sparse edges.

¢ virtual OGRGeometry « SymmetricDifference (const OGRGeometry x) const

Compute symmetric difference (deprecated).

« virtual OGRGeometry * getBoundary () const
Compute boundary (deprecated).

* virtual void swapXY ()

Swap x and y coordinates.

13.50.1 Detailed Description

Abstract base class for all geometry classes.

Some spatial analysis methods require that OGR is built on the GEOS library to work properly. The
precise meaning of methods that describe spatial relationships between geometries is described in the
SFCOM, or other simple features interface specifications, like "OpenGIS® Implementation Specification
for Geographic information - Simple feature access - Part 1: Common architecture” (OGC 06-103r3)

13.50.2 Member Function Documentation
13.50.2.1 void OGRGeometry::assignSpatialReference (OGRSpatialReference * poSR)

Assign spatial reference to this object. Any existing spatial reference is replaced, but under no circum-
stances does this result in the object being reprojected. It is just changing the interpretation of the existing
geometry. Note that assigning a spatial reference increments the reference count on the OGRSpatialRef-
erence (p. ??), but does not copy it.

This is similar to the SFCOM IGeometry::put_SpatialReference() method.
This method is the same as the C function OGR_G_AssignSpatialReference() (p. 2?).

Parameters:

PpoSR new spatial reference system to apply.

13.50 OGRGeometry Class Reference 187

References OGRSpatialReference::Reference(), and OGRSpatialReference::Release().

Referenced by OGRPolygon::clone(), OGRPoint::clone(), OGRMultiPolygon::clone(), OGRMul-
tiPoint::clone(), OGRMultiLineString::clone(), OGRLineString::clone(), OGRLinearRing::clone(),
OGRGeometryCollection::clone(), OGRGeometryFactory::createFromWkb(), OGRGeometryFac-
tory::createFromWkt(), OGRPolygon::transform(), OGRPoint::transform(), OGRLineString::transform(),
and OGRGeometryCollection::transform().

13.50.2.2 OGRGeometry x OGRGeometry::Boundary () const [virtual]

Compute boundary. A new geometry object is created and returned containing the boundary of the geom-
etry on which the method is invoked.

This method is the same as the C function OGR_G_Boundary() (p. 2?).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Returns:

a newly allocated geometry now owned by the caller, or NULL on failure.

Since:

OGR 1.8.0

Referenced by getBoundary().

13.50.2.3 OGRGeometry *+ OGRGeometry::Buffer (double dfDist, int nQuadSegs = 30) const
[virtual]

Compute buffer of geometry. Builds a new geometry containing the buffer region around the geometry on
which it is invoked. The buffer is a polygon containing the region within the buffer distance of the original
geometry.

Some buffer sections are properly described as curves, but are converted to approximate polygons. The
nQuadSegs parameter can be used to control how many segements should be used to define a 90 degree
curve - a quadrant of a circle. A value of 30 is a reasonable default. Large values result in large numbers
of vertices in the resulting buffer geometry while small numbers reduce the accuracy of the result.

This method is the same as the C function OGR_G_Buffer() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters:
dfDist the buffer distance to be applied.

nQuadSegs the number of segments used to approximate a 90 degree (quadrant) of curvature.

Returns:

the newly created geometry, or NULL if an error occurs.

188 Class Documentation

13.50.2.4 int OGRGeometry::Centroid (OGRPoint « poPoint) const [virtual]
Compute the geometry centroid. The centroid location is applied to the passed in OGRPoint (p. ??) object.
The centroid is not necessarily within the geometry.

This method relates to the SFCOM ISurface::get_Centroid() method however the current implementation
based on GEOS can operate on other geometry types such as multipoint, linestring, geometrycollection
such as multipolygons. OGC SF SQL 1.1 defines the operation for surfaces (polygons). SQL/MM-Part 3
defines the operation for surfaces and multisurfaces (multipolygons).

This function is the same as the C function OGR_G_Centroid() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.
Returns:

OGRERR_NONE on success or OGRERR_FAILURE on error.

Since:

OGR 1.8.0 as a OGRGeometry (p. ??) method (previously was restricted to OGRPolygon (p. ??))

References getGeometryType(), OGRPoint::getX(), OGRPoint::getY(), OGRPoint::setX(), OGR-
Point::setY(), and wkbPoint.

Referenced by OGR_G_Centroid().

13.50.2.5 OGRGeometry x OGRGeometry::clone () const [pure virtual]

Make a copy of this object. This method relates to the SFCOM IGeometry::clone() method.
This method is the same as the C function OGR_G_Clone() (p. ??).

Returns:

a new object instance with the same geometry, and spatial reference system as the original.

Implemented in OGRPoint (p.??), OGRLineString (p.??), OGRLinearRing (p.??), OGRPolygon
(p-?7?7), OGRGeometryCollection (p.??), OGRMultiPolygon (p.??), OGRMultiPoint (p.??), and
OGRMultiLineString (p.??).

Referenced by OGRGeometryCollection::addGeometry(), and OGRFeature::SetGeometry().

13.50.2.6 void OGRGeometry::closeRings () [virtual]

Force rings to be closed. If this geometry, or any contained geometries has polygon rings that are not
closed, they will be closed by adding the starting point at the end.

Reimplemented in OGRLinearRing (p.??), OGRPolygon (p.??), and OGRGeometryCollection
(- 7).

13.50.2.7 OGRBoolean OGRGeometry::Contains (const OGRGeometry * poOtherGeom) const
[virtual]

Test for containment. Tests if actual geometry object contains the passed geometry.

13.50 OGRGeometry Class Reference 189

This method is the same as the C function OGR_G_Contains() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.
Parameters:

poOtherGeom the geometry to compare to this geometry.

Returns:

TRUE if poOtherGeom contains this geometry, otherwise FALSE.

13.50.2.8 OGRGeometry + OGRGeometry::ConvexHull () const [virtual]

Compute convex hull. A new geometry object is created and returned containing the convex hull of the
geometry on which the method is invoked.

This method is the same as the C function OGR_G_ConvexHull() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.
Returns:

a newly allocated geometry now owned by the caller, or NULL on failure.

13.50.2.9 OGRBoolean OGRGeometry::Crosses (const OGRGeometry * poOtherGeom) const
[virtual]

Test for crossing. Tests if this geometry and the other passed into the method are crossing.

This method is the same as the C function OGR_G_Crosses() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is

built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters:

poOtherGeom the geometry to compare to this geometry.

Returns:

TRUE if they are crossing, otherwise FALSE.

13.50.2.10 OGRGeometry x OGRGeometry::Difference (const OGRGeometry *x poOtherGeom)
const [virtual]

Compute difference. Generates a new geometry which is the region of this geometry with the region of the
second geometry removed.
This method is the same as the C function OGR_G_Difference() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

190 Class Documentation

Parameters:

poOtherGeom the other geometry removed from "this" geometry.

Returns:

a new geometry representing the difference or NULL if the difference is empty or an error occurs.

13.50.2.11 OGRBoolean OGRGeometry::Disjoint (const OGRGeometry * poOtherGeom) const
[virtual]

Test for disjointness. Tests if this geometry and the other passed into the method are disjoint.

This method is the same as the C function OGR_G_Disjoint() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is

built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters:

poOtherGeom the geometry to compare to this geometry.

Returns:

TRUE if they are disjoint, otherwise FALSE.

13.50.2.12 double OGRGeometry::Distance (const OGRGeometry * poOtherGeom) const
[virtual]

Compute distance between two geometries. Returns the shortest distance between the two geometries.
This method is the same as the C function OGR_G_Distance() (p. 2?).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters:

poOtherGeom the other geometry to compare against.

Returns:

the distance between the geometries or -1 if an error occurs.

13.50.2.13 void OGRGeometry::dumpReadable (FILE * fp, const char * pszPrefix = NULL, char
x* papszOptions = NULL) const [virtual]

Dump geometry in well known text format to indicated output file. A few options can be defined to change
the default dump :

e DISPLAY_GEOMETRY=NO : to hide the dump of the geometry
e DISPLAY_GEOMETRY=WKT or YES (default) : dump the geometry as a WKT

* DISPLAY_GEOMETRY=SUMMARY : to get only a summary of the geometry

13.50 OGRGeometry Class Reference 191

This method is the same as the C function OGR_G_DumpReadable() (p. ??).

Parameters:
Jp the text file to write the geometry to.
pszPrefix the prefix to put on each line of output.
papszOptions NULL terminated list of options (may be NULL)

References dumpReadable(), exportToWkt(), OGRPolygon::getExteriorRing(), getGeometryName(),
OGRGeometryCollection::getGeometryRef(), getGeometryType(), OGRPolygon::getInteriorRing(),
OGRGeometryCollection::getNumGeometries(), OGRPolygon::getNumlInteriorRings(), OGR-
LineString::getNumPoints(), wkbGeometryCollection, wkbGeometryCollection25D, wkbLinearRing,
wkbLineString, wkbLineString25D, wkbMultiLineString, wkbMultiLineString25D, wkbMultiPoint,
wkbMultiPoint25D, wkbMultiPolygon, wkbMultiPolygon25D, wkbNone, wkbPoint, wkbPoint25D,
wkbPolygon, wkbPolygon25D, and wkbUnknown.

Referenced by dumpReadable(), and OGRFeature::DumpReadable().

13.50.2.14 void OGRGeometry::empty () [pure virtual]

Clear geometry information. This restores the geometry to it’s initial state after construction, and before
assignment of actual geometry. This method relates to the SFCOM IGeometry::Empty() method.

This method is the same as the C function OGR_G_Empty() (p. 2?).

Implemented in OGRPoint (p.??), OGRLineString (p.??), OGRPolygon (p.??), and OGRGeome-
tryCollection (p.??).

13.50.2.15 int OGRGeometry::Equals (OGRGeometry x poOtherGeom) const [pure
virtual]

Returns TRUE if two geometries are equivalent. This method is the same as the C function OGR_G_-
Equals() (p. ??).

Returns:

TRUE if equivalent or FALSE otherwise.

Referenced by OGRFeature::Equal().

13.50.2.16 char x OGRGeometry::exportToGML (const char xconst * papszOptions = NULL) const
[virtual]

Convert a geometry into GML format. The GML geometry is expressed directly in terms of GML basic
data types assuming the this is available in the gml namespace. The returned string should be freed with
CPLFree() when no longer required.

The supported options in OGR 1.8.0 are :

* FORMAT=GML3. Otherwise it will default to GML 2.1.2 output.

e GML3_LINESTRING_ELEMENT=curve. (Only valid for FORMAT=GML3) To use gml:Curve
element for linestrings. Otherwise gml:LineString will be used .

192 Class Documentation

¢ GML3_LONGSRS=YES/NO. (Only valid for FORMAT=GML3) Default to YES. If YES, SRS with
EPSG authority will be written with the "urn:ogc:def:crs:EPSG::" prefix. In the case, if the SRS is
a geographic SRS without explicit AXIS order, but that the same SRS authority code imported with
ImportFromEPSGA() should be treated as lat/long, then the function will take care of coordinate
order swapping. If set to NO, SRS with EPSG authority will be written with the "EPSG:" prefix,
even if they are in lat/long order.

This method is the same as the C function OGR_G_ExportToGMLEXx() (p. ??).

Parameters:

papszOptions NULL-terminated list of options.

Returns:

A GML fragment or NULL in case of error.

13.50.2.17 char * OGRGeometry::exportToJson () const [virtual]

Convert a geometry into GeoJSON format. The returned string should be freed with CPLFree() when no
longer required.

This method is the same as the C function OGR_G_ExportToJson() (p. 2?).

Returns:

A GeoJSON fragment or NULL in case of error.

References OGR_G_ExportToJson().

13.50.2.18 char x* OGRGeometry::exportToKML () const [virtual]

Convert a geometry into KML format. The returned string should be freed with CPLFree() when no longer
required.

This method is the same as the C function OGR_G_ExportToKML() (p. ??).

Returns:

A KML fragment or NULL in case of error.

References OGR_G_ExportToKML().

13.50.2.19 OGRErr OGRGeometry::exportToWkb (OGRwkbByteOrder eByteOrder, unsigned
char x pabyData) const [pure virtual]

Convert a geometry into well known binary format. This method relates to the SFCOM
IWks::ExportToWKB() method.

This method is the same as the C function OGR_G_ExportToWkb() (p. ??).

Parameters:

eByteOrder One of wkbXDR or wkbNDR indicating MSB or LSB byte order respectively.

13.50 OGRGeometry Class Reference 193

pabyData a buffer into which the binary representation is written. This buffer must be at least OGR-
Geometry::WkbSize() (p. ??) byte in size.
Returns:
Currently OGRERR_NONE is always returned.
Implemented in OGRPoint (p. ??), OGRLineString (p.??), OGRLinearRing (p.??), OGRPolygon
(p- ??), and OGRGeometryCollection (p.??).
Referenced by OGRGeometryCollection::export ToWkb().

13.50.2.20 OGRErr OGRGeometry::exportToWKkt (char xx ppszDstText) const [pure
virtual]

Convert a geometry into well known text format. This method relates to the SFCOM
IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters:

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer.

Returns:

Currently OGRERR_NONE is always returned.

Implemented in OGRPoint (p.??), OGRLineString (p. ??), OGRPolygon (p. ??), OGRGeometryCol-
lection (p.??), OGRMultiPolygon (p. ??), OGRMultiPoint (p.??), and OGRMultiLineString (p.??).

Referenced by dumpReadable(), OGRMultiPolygon::exportToWkt(), OGRMulti-
LineString::exportToWkt(), OGRGeometryCollection::exportToWkt(), and OGRFea-
ture::GetField AsString().

13.50.2.21 void OGRGeometry::flattenTo2D () [pure virtual]

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0. This method is the same
as the C function OGR_G_FlattenTo2D() (p. ??).

Implemented in OGRPoint (p.??), OGRLineString (p.??), OGRPolygon (p.??), and OGRGeome-
tryCollection (p.??).

13.50.2.22 OGRGeometry x OGRGeometry::getBoundary () const [virtuall]

Compute boundary (deprecated).

Deprecated

See also:

Boundary() (p. ??)

References Boundary().

194 Class Documentation

13.50.2.23 int OGRGeometry::getCoordinateDimension () const [virtual]

Get the dimension of the coordinates in this object. This method corresponds to the SFCOM IGeome-
try::GetDimension() method.

This method is the same as the C function OGR_G_GetCoordinateDimension() (p. ??).

Returns:

in practice this will return 2 or 3. It can also return O in the case of an empty point.

Referenced by OGRGeometryCollection::addGeometryDirectly(), OGRLineString::addPoint(),
OGRPolygon::addRing(), OGRPolygon::addRingDirectly(), OGRLineString::clone(), OGRLinear-
Ring::closeRings(), = OGRPolygon::exportToWkb(), = OGRLineString::exportToWkb(), = OGRPoly-
gon::exportToWkt(), OGRMultiPoint::exportToWkt(), OGRLineString::exportToWkt(), OGRPoly-
gon::getGeometryType(), OGRMultiPolygon::getGeometryType(), OGRMultiPoint::getGeometryType(),
OGRMultiLineString::getGeometry Type(), OGRLineString::getGeometryType(), OGRGeome-
tryCollection::getGeometry Type(), OGRLineString::getPoint(), OGRLineString::segmentize(),
OGRLineString::setNumPoints(), =~ OGRLineString::setPoint(), ~OGRLineString::setPoints(), OGR-
LineString::Value(), OGRPolygon::WkbSize(), and OGRLineString::WkbSize().

13.50.2.24 int OGRGeometry::getDimension () const [pure virtual]

Get the dimension of this object. This method corresponds to the SFCOM IGeometry::GetDimension()
method. It indicates the dimension of the object, but does not indicate the dimension of the underlying
space (as indicated by OGRGeometry::getCoordinateDimension() (p. ??)).

This method is the same as the C function OGR_G_GetDimension() (p. 2?).

Returns:

0 for points, 1 for lines and 2 for surfaces.

Implemented in OGRPoint (p.??), OGRLineString (p.??), OGRPolygon (p.??), and OGRGeome-
tryCollection (p.??).

13.50.2.25 void OGRGeometry::getEnvelope (OGREnvelope3D * psEnvelope) const [pure
virtual]

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.
This method is the same as the C function OGR_G_GetEnvelope3D() (p. 2?).

Parameters:

psEnvelope the structure in which to place the results.

Since:

OGR 1.9.0

Implemented in OGRPoint (p.??), OGRLineString (p.??), OGRPolygon (p.??), and OGRGeome-
tryCollection (p.??).

13.50 OGRGeometry Class Reference 195

13.50.2.26 void OGRGeometry::getEnvelope (OGREnvelope * psEnvelope) const [pure
virtual]

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure. This
method is the same as the C function OGR_G_GetEnvelope() (p. ??).

Parameters:

psEnvelope the structure in which to place the results.

Implemented in OGRPoint (p.??), OGRLineString (p.??), OGRPolygon (p.??), and OGRGeome-
tryCollection (p.??).

Referenced by OGRGeometryCollection::getEnvelope(), OGRLayer::GetExtent(), Intersects(), and OGR-
GeometryFactory::organizePolygons().

13.50.2.27 const char x OGRGeometry::getGeometryName () const [pure virtual]

Fetch WKT name for geometry type. There is no SFCOM analog to this method.
This method is the same as the C function OGR_G_GetGeometryName() (p. 2?).

Returns:

name used for this geometry type in well known text format. The returned pointer is to a static internal
string and should not be modified or freed.

Implemented in OGRPoint (p.??), OGRLineString (p.??), OGRLinearRing (p.??), OGRPolygon
(p-?7?7), OGRGeometryCollection (p.??), OGRMultiPolygon (p.??), OGRMultiPoint (p.??), and
OGRMultiLineString (p.??).

Referenced by dumpReadable(), and OGRFeature::GetField AsString().

13.50.2.28 OGRwkbGeometryType OGRGeometry::getGeometryType () const [pure
virtual]

Fetch geometry type. Note that the geometry type may include the 2.5D flag. To get a 2D flattened version
of the geometry type apply the wkbFlatten() macro to the return result.

This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Returns:

the geometry type code.

Implemented in OGRPoint (p.??), OGRLineString (p. ??), OGRPolygon (p.??), OGRGeometryCol-
lection (p.??), OGRMultiPolygon (p. ??), OGRMultiPoint (p.??), and OGRMultiLineString (p.??).

Referenced by OGRMultiPolygon::addGeometryDirectly(), OGRMultiPoint::addGeometryDirectly(),
OGRMultiLineString::addGeometryDirectly(), = Centroid(), = dumpReadable(), = OGRGeometryFac-
tory::force ToMultiLineString(), OGRGeometryFactory::forceToMultiPoint(), OGRGeometryFac-
tory::forceToMultiPolygon(), OGRGeometryFactory::forceToPolygon(), OGRGeometryCollection::get_-
Area(), OGRGeometryCollection::get_Length(), OGRBuildPolygonFromEdges(), OGRPoly-
gon::PointOnSurface(), and Polygonize().

196 Class Documentation

13.50.2.29 OGRSpatialReference «+ OGRGeometry::getSpatialReference (void) const [inline]
Returns spatial reference system for object. This method relates to the SFCOM IGeometry::get -
SpatialReference() method.

This method is the same as the C function OGR_G_GetSpatialReference() (p. 2?).

Returns:

a reference to the spatial reference object. The object may be shared with many geometry objects, and
should not be modified.

Referenced by OGRPolygon::clone(), OGRPoint::clone(), OGRMultiPolygon::clone(), OGRMulti-
Point::clone(), OGRMultiLineString::clone(), OGRLineString::clone(), OGRLinearRing::clone(), OGR-
GeometryCollection::clone(), and transformTo().

13.50.2.30 OGRErr OGRGeometry::importFromWkb (unsigned char * pabyData, int nSize = -1)
[pure virtual]

Assign geometry from well known binary data. The object must have already been instantiated as the
correct derived type of geometry object to match the binaries type. This method is used by the OGRGe-
ometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKB() method.
This method is the same as the C function OGR_G_ImportFromWkb() (p. ??).

Parameters:

pabyData the binary input data.

nSize the size of pabyData in bytes, or zero if not known.

Returns:

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implemented in OGRPoint (p.??), OGRLineString (p.??), OGRLinearRing (p.??), OGRPolygon
(p- ??), and OGRGeometryCollection (p.??).

Referenced by OGRGeometryFactory::createFromWkb().

13.50.2.31 OGRErr OGRGeometry::importFromWkt (char xx ppszInput) [pure virtual]

Assign geometry from well known text data. The object must have already been instantiated as the correct
derived type of geometry object to match the text type. This method is used by the OGRGeometryFactory
(p- ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKT() method.
This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

Parameters:

ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.

13.50 OGRGeometry Class Reference 197

Returns:

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implemented in OGRPoint (p.??), OGRLineString (p. ??), OGRPolygon (p.??), OGRGeometryCol-
lection (p. ??), OGRMultiPolygon (p. ??), OGRMultiPoint (p. ??), and OGRMultiLineString (p.??).
Referenced by OGRGeometryFactory::createFromWkt().

13.50.2.32 OGRGeometry x OGRGeometry::Intersection (const OGRGeometry * poOtherGeom)
const [virtuall]

Compute intersection. Generates a new geometry which is the region of intersection of the two geometries
operated on. The Intersects() (p. ??) method can be used to test if two geometries intersect.

This method is the same as the C function OGR_G_Intersection() (p. 2?).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.
Parameters:

poOtherGeom the other geometry intersected with "this" geometry.

Returns:

a new geometry representing the intersection or NULL if there is no intersection or an error occurs.

13.50.2.33 OGRBoolean OGRGeometry::Intersects (OGRGeometry x poOtherGeom) const
[virtual]

Do these features intersect? Determines whether two geometries intersect. If GEOS is enabled, then this is
done in rigerous fashion otherwise TRUE is returned if the envelopes (bounding boxes) of the two features
overlap.

The poOtherGeom argument may be safely NULL, but in this case the method will always return TRUE.
That is, a NULL geometry is treated as being everywhere.

This method is the same as the C function OGR_G_Intersects() (p. ??).

Parameters:

poOtherGeom the other geometry to test against.

Returns:

TRUE if the geometries intersect, otherwise FALSE.

References getEnvelope().

13.50.2.34 OGRBoolean OGRGeometry::IsEmpty () const [pure virtual]

Returns TRUE (non-zero) if the object has no points. Normally this returns FALSE except between when
an object is instantiated and points have been assigned.

This method relates to the SFCOM IGeometry::IsEmpty() method.

198 Class Documentation

Returns:

TRUE if object is empty, otherwise FALSE.

Implemented in OGRPoint (p.??), OGRLineString (p.??), OGRPolygon (p.??), and OGRGeome-
tryCollection (p.??).

Referenced by OGRLayer::GetExtent().

13.50.2.35 OGRBoolean OGRGeometry::IsRing () const [virtuall]

Test if the geometry is a ring. This method is the same as the C function OGR_G_IsRing() (p. 2?).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always return FALSE.

Returns:

TRUE if the geometry has no points, otherwise FALSE.

13.50.2.36 OGRBoolean OGRGeometry::IsSimple () const [virtual]

Test if the geometry is simple. This method is the same as the C function OGR_G_IsSimple() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always return FALSE.

Returns:

TRUE if the geometry has no points, otherwise FALSE.

13.50.2.37 OGRBoolean OGRGeometry::IsValid () const [virtual]

Test if the geometry is valid. This method is the same as the C function OGR_G_IsValid() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always return FALSE.

Returns:

TRUE if the geometry has no points, otherwise FALSE.

13.50.2.38 OGRBoolean OGRGeometry::Overlaps (const OGRGeometry * poOtherGeom) const
[virtual]

Test for overlap. Tests if this geometry and the other passed into the method overlap, that is their intersec-
tion has a non-zero area.
This method is the same as the C function OGR_G_Overlaps() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

13.50 OGRGeometry Class Reference 199

Parameters:

poOtherGeom the geometry to compare to this geometry.

Returns:

TRUE if they are overlapping, otherwise FALSE.

Referenced by OGRGeometryFactory::organizePolygons().

13.50.2.39 OGRGeometry x* OGRGeometry::Polygonize () const [virtuall]

Polygonizes a set of sparse edges. A new geometry object is created and returned containing a collection
of reassembled Polygons: NULL will be returned if the input collection doesn’t corresponds to a Multi-
Linestring, or when reassembling Edges into Polygons is impossible due to topogical inconsistencies.

This method is the same as the C function OGR_G_Polygonize() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.
Returns:

a newly allocated geometry now owned by the caller, or NULL on failure.

Since:

OGR 1.9.0

References OGRGeometryCollection::getGeometryRef(), getGeometryType(), OGRGeometryCollec-
tion::getNumGeometries(), wkbGeometryCollection, wkbLineString, and wkbMultiLineString.

13.50.2.40 void OGRGeometry::segmentize (double dfMaxLength) [virtual]

Modify the geometry such it has no segment longer then the given distance. Interpolated points will have
Z and M values (if needed) set to 0. Distance computation is performed in 2d only

This function is the same as the C function OGR_G_Segmentize() (p.??)

Parameters:

dfMaxLength the maximum distance between 2 points after segmentization

Reimplemented in OGRLineString (p.??), OGRPolygon (p.??), and OGRGeometryCollection
(P-?7).

13.50.2.41 void OGRGeometry::setCoordinateDimension (int nNewDimension) [virtuall]

Set the coordinate dimension. This method sets the explicit coordinate dimension. Setting the coordinate
dimension of a geometry to 2 should zero out any existing Z values. Setting the dimension of a geometry
collection will not necessarily affect the children geometries.

Parameters:

nNewDimension New coordinate dimension value, either 2 or 3.

200 Class Documentation

Reimplemented in OGRPoint (p.??), OGRLineString (p.??), OGRPolygon (p.??), and OGRGeom-
etryCollection (p.??).

Referenced by OGRGeometryCollection::setCoordinateDimension().
13.50.2.42 OGRGeometry x* OGRGeometry::Simplify (double d7olerance) const [virtual]

Simplify the geometry. This function is the same as the C function OGR_G_Simplify() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters:

dTolerance the distance tolerance for the simplification.

Returns:

the simplified geometry or NULL if an error occurs.

Since:

OGR 1.8.0

13.50.2.43 OGRGeometry x OGRGeometry::SimplifyPreserveTopology (double dTolerance) const

Simplify the geometry while preserving topology. This function is the same as the C function OGR_G_-
SimplifyPreserveTopology() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters:

dTolerance the distance tolerance for the simplification.

Returns:

the simplified geometry or NULL if an error occurs.

Since:

OGR 1.9.0

13.50.2.44 void OGRGeometry::swapXY () [virtual]
Swap x and y coordinates.

Since:

OGR 1.8.0

Reimplemented in OGRPoint (p. ??), OGRLineString (p.??), OGRPolygon (p.??), and OGRGeom-
etryCollection (p.??).

13.50 OGRGeometry Class Reference 201

13.50.2.45 OGRGeometry + OGRGeometry::SymDifference (const OGRGeometry *
poOtherGeom) const [virtual]

Compute symmetric difference. Generates a new geometry which is the symmetric difference of this ge-
ometry and the second geometry passed into the method.
This method is the same as the C function OGR_G_SymDifference() (p. 2?).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters:

poOtherGeom the other geometry.

Returns:

a new geometry representing the symmetric difference or NULL if the difference is empty or an error
occurs.

Since:

OGR 1.8.0

Referenced by SymmetricDifference().

13.50.2.46 OGRGeometry x OGRGeometry::SymmetricDifference (const OGRGeometry *
poOtherGeom) const [virtual]

Compute symmetric difference (deprecated).

Deprecated

See also:

OGRGeometry::SymDifference() (p. ??)

References SymDifference().

13.50.2.47 OGRBoolean OGRGeometry::Touches (const OGRGeometry * poOtherGeom) const
[virtual]

Test for touching. Tests if this geometry and the other passed into the method are touching.

This method is the same as the C function OGR_G_Touches() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is

built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters:

poOtherGeom the geometry to compare to this geometry.

Returns:

TRUE if they are touching, otherwise FALSE.

202 Class Documentation

13.50.2.48 OGRErr OGRGeometry::transform (OGRCoordinateTransformation * poCT)
[pure virtual]

Apply arbitrary coordinate transformation to geometry. This method will transform the coordinates of a
geometry from their current spatial reference system to a new target spatial reference system. Normally
this means reprojecting the vectors, but it could include datum shifts, and changes of units.

Note that this method does not require that the geometry already have a spatial reference system. It will
be assumed that they can be treated as having the source spatial reference system of the OGRCoordi-
nateTransformation (p. ??) object, and the actual SRS of the geometry will be ignored. On successful
completion the output OGRSpatialReference (p. ??) of the OGRCoordinateTransformation (p. ??) will
be assigned to the geometry.

This method is the same as the C function OGR_G_Transform() (p. ??).

Parameters:

poCT the transformation to apply.

Returns:

OGRERR_NONE on success or an error code.
Implemented in OGRPoint (p.??), OGRLineString (p.??), OGRPolygon (p.??), and OGRGeome-
tryCollection (p.??).

Referenced by OGRGeometryCollection::transform(), and transformTo().

13.50.2.49 OGRErr OGRGeometry::transformTo (OGRSpatialReference « poSR)

Transform geometry to new spatial reference system. This method will transform the coordinates of a
geometry from their current spatial reference system to a new target spatial reference system. Normally
this means reprojecting the vectors, but it could include datum shifts, and changes of units.

This method will only work if the geometry already has an assigned spatial reference system, and if it is
transformable to the target coordinate system.

Because this method requires internal creation and initialization of an OGRCoordinateTransformation
(p- ?7?) object it is significantly more expensive to use this method to transform many geometries than it is
to create the OGRCoordinateTransformation (p. ??) in advance, and call transform() (p. ??) with that
transformation. This method exists primarily for convenience when only transforming a single geometry.

This method is the same as the C function OGR_G_TransformTo() (p. ??).

Parameters:

PoSR spatial reference system to transform to.

Returns:

OGRERR_NONE on success, or an error code.

References getSpatialReference(), OGRCreateCoordinateTransformation(), and transform().

13.50.2.50 OGRGeometry x OGRGeometry::Union (const OGRGeometry * poOtherGeom) const
[virtual]

Compute union. Generates a new geometry which is the region of union of the two geometries operated
on.

13.50 OGRGeometry Class Reference 203

This method is the same as the C function OGR_G_Union() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.
Parameters:

poOtherGeom the other geometry unioned with "this" geometry.

Returns:

a new geometry representing the union or NULL if an error occurs.

13.50.2.51 OGRGeometry x* OGRGeometry::UnionCascaded () const [virtual]

Compute union using cascading. This method is the same as the C function OGR_G_UnionCascaded()
(P.??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is
built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.
Returns:

a new geometry representing the union or NULL if an error occurs.

Since:

OGR 1.8.0

13.50.2.52 OGRBoolean OGRGeometry::Within (const OGRGeometry *x poOtherGeom) const
[virtual]

Test for containment. Tests if actual geometry object is within the passed geometry.

This method is the same as the C function OGR_G_Within() (p. 2?).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is

built without the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters:

poOtherGeom the geometry to compare to this geometry.

Returns:

TRUE if poOtherGeom is within this geometry, otherwise FALSE.

13.50.2.53 int OGRGeometry::WkbSize () const [pure virtual]

Returns size of related binary representation. This method returns the exact number of bytes required
to hold the well known binary representation of this geometry object. Its computation may be slightly
expensive for complex geometries.

This method relates to the SFCOM IWks::WkbSize() method.
This method is the same as the C function OGR_G_WKkbSize() (p. ??).

204 Class Documentation

Returns:

size of binary representation in bytes.

Implemented in OGRPoint (p.??), OGRLineString (p.??), OGRLinearRing (p.??), OGRPolygon
(p- ?7?), and OGRGeometryCollection (p.??).

Referenced by OGRGeometryCollection::exportToWkb(), and OGRGeometryCollection:: WkbSize().
The documentation for this class was generated from the following files:

* ogr_geometry.h
e ogrgeometry.cpp

13.51 OGRGeometryCollection Class Reference 205

13.51 OGRGeometryCollection Class Reference

#include <ogr_geometry.h>Inheritance diagram for OGRGeometryCollection::

| OGRGeometry |

T

| OGRGeometryCollection |

i
[N |

OGRMultiLineString || OGRMultiPoint || OGRMultiPolygon

Public Member Functions

OGRGeometryCollection ()

Create an empty geometry collection.

e virtual const char * getGeometryName () const

Fetch WKT name for geometry type.

¢ virtual OGRwkbGeometryType getGeometryType () const
Fetch geometry type.

¢ virtual OGRGeometry * clone () const

Make a copy of this object.

* virtual void empty ()

Clear geometry information. This restores the geometry to it’s initial state after construction, and before
assignment of actual geometry.

¢ virtual OGRErr transform (OGRCoordinateTransformation xpoCT)

Apply arbitrary coordinate transformation to geometry.

* virtual void flattenTo2D ()

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

¢ virtual OGRBoolean IsEmpty () const

Returns TRUE (non-zero) if the object has no points.

* virtual void segmentize (double dfMaxLength)

Modify the geometry such it has no segment longer then the given distance.

e virtual int WkbSize () const

Returns size of related binary representation.

e virtual OGRErr importFromWkb (unsigned char x*, int=-1)

Assign geometry from well known binary data.

* virtual OGRErr exportToWkb (OGRwkbByteOrder, unsigned char *) const

206 Class Documentation

Convert a geometry into well known binary format.

¢ virtual OGRErr importFromWkt (char xx)

Assign geometry from well known text data.

* virtual OGRErr exportToWkt (char *xppszDstText) const

Convert a geometry into well known text format.

* virtual double get_Length () const

Compute the length of a multicurve.

* virtual double get_Area () const

Compute area of geometry collection.

* virtual int getDimension () const

Get the dimension of this object.

* virtual void getEnvelope (OGREnvelope s«psEnvelope) const

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

* virtual void getEnvelope (OGREnvelope3D xpsEnvelope) const

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

* int getNumGeometries () const

Fetch number of geometries in container.

* OGRGeometry * getGeometryRef (int)

Fetch geometry from container.

« virtual void setCoordinateDimension (int nDimension)

Set the coordinate dimension.

* virtual OGRErr addGeometry (const OGRGeometry =)

Add a geometry to the container.

¢ virtual OGRErr addGeometryDirectly (OGRGeometry)

Add a geometry directly to the container.

¢ virtual OGRErr removeGeometry (int ilndex, int bDelete=TRUE)

Remove a geometry from the container.

* void closeRings ()

Force rings to be closed.

* virtual void swapXY ()

Swap x and y coordinates.

13.51 OGRGeometryCollection Class Reference 207

13.51.1 Detailed Description

A collection of 1 or more geometry objects.

All geometries must share a common spatial reference system, and Subclasses may impose additional
restrictions on the contents.

13.51.2 Member Function Documentation

13.51.2.1 OGRErr OGRGeometryCollection::addGeometry (const OGRGeometry * poNewGeom)
[virtual]

Add a geometry to the container. Some subclasses of OGRGeometryCollection (p. ??) restrict the types
of geometry that can be added, and may return an error. The passed geometry is cloned to make an internal

copy.
There is no SFCOM analog to this method.

This method is the same as the C function OGR_G_AddGeometry() (p. 2?).

Parameters:

poNewGeom geometry to add to the container.

Returns:

OGRERR_NONE if successful, or OGRERR_UNSUPPORTED_GEOMETRY_TYPE if the geome-
try type is illegal for the type of geometry container.

References addGeometryDirectly(), and OGRGeometry::clone().

Referenced by OGRMultiPolygon::clone(), OGRMultiPoint::clone(), OGRMultiLineString::clone(), and
clone().

13.51.2.2 OGRErr OGRGeometryCollection::addGeometryDirectly (OGRGeometry *
poNewGeom) [virtual]

Add a geometry directly to the container. Some subclasses of OGRGeometryCollection (p. ??) restrict
the types of geometry that can be added, and may return an error. Ownership of the passed geometry is
taken by the container rather than cloning as addGeometry() (p. ??) does.

This method is the same as the C function OGR_G_AddGeometryDirectly() (p. 2?).
There is no SFCOM analog to this method.

Parameters:

poNewGeom geometry to add to the container.

Returns:

OGRERR_NONE if successful, or OGRERR_UNSUPPORTED_GEOMETRY_TYPE if the geome-
try type is illegal for the type of geometry container.

Reimplemented in OGRMultiPolygon (p.??), OGRMultiPoint (p.??), and OGRMultiLineString
P.?2.

208 Class Documentation

References OGRGeometry::getCoordinateDimension().

Referenced by addGeometry().

13.51.2.3 OGRGeometry x* OGRGeometryCollection::clone () const [virtual]

Make a copy of this object. This method relates to the SFCOM IGeometry::clone() method.
This method is the same as the C function OGR_G_Clone() (p. ??).

Returns:

a new object instance with the same geometry, and spatial reference system as the original.

Implements OGRGeometry (p.??).

Reimplemented in OGRMultiPolygon (p.??), OGRMultiPoint (p.??), and OGRMultiLineString
(p-?7).

References addGeometry(), OGRGeometry::assignSpatialReference(), and OGRGeome-
try::getSpatialReference().

13.51.2.4 void OGRGeometryCollection::closeRings () [virtual]

Force rings to be closed. If this geometry, or any contained geometries has polygon rings that are not
closed, they will be closed by adding the starting point at the end.

Reimplemented from OGRGeometry (p.??).

References getGeometryType(), and wkbPolygon.

13.51.2.5 void OGRGeometryCollection::empty () [virtual]

Clear geometry information. This restores the geometry to it’s initial state after construction, and before
assignment of actual geometry. This method relates to the SFCOM IGeometry::Empty() method.

This method is the same as the C function OGR_G_Empty() (p. 2?).

Implements OGRGeometry (p.??).

Referenced by OGRMultiPolygon::importFromWkt(), OGRMultiPoint::importFromWkt(), and OGRMul-
tiLineString::importFromWkt().

13.51.2.6 OGRErr OGRGeometryCollection::exportToWkb (OGRwkbByteOrder eByteOrder,
unsigned char x pabyData) const [virtuall]

Convert a geometry into well known binary format. This method relates to the SFCOM
IWks::ExportToWKB() method.
This method is the same as the C function OGR_G_ExportToWkb() (p. ??).

Parameters:

eByteOrder One of wkbXDR or wkbNDR indicating MSB or LSB byte order respectively.

pabyData a buffer into which the binary representation is written. This buffer must be at least OGR-
Geometry::WkbSize() (p. ??) byte in size.

13.51 OGRGeometryCollection Class Reference 209

Returns:

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p.??).
References OGRGeometry::exportToWkb(), getGeometryType(), and OGRGeometry:: WkbSize().

13.51.2.7 OGRErr OGRGeometryCollection::exportToWkt (char xx ppszDstText) const
[virtual]

Convert a geometry into well known text format. This method relates to the SFCOM
IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters:

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer.

Returns:

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p.??).

Reimplemented in OGRMultiPolygon (p.??), OGRMultiPoint (p.??), and OGRMultiLineString
(p.-??7).

References OGRGeometry::exportToWkt(), getGeometryName(), and getNumGeometries().

13.51.2.8 void OGRGeometryCollection::flattenTo2D () [virtual]

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0. This method is the same
as the C function OGR_G_FlattenTo2D() (p. ??).

Implements OGRGeometry (p.??).

13.51.2.9 double OGRGeometryCollection::get_Area () const [virtual]

Compute area of geometry collection. The area is computed as the sum of the areas of all members in this
collection.

Note:

No warning will be issued if a member of the collection does not support the get_Area method.

Returns:

computed area.

Reimplemented in OGRMultiPolygon (p. ??).

References getGeometryName(), OGRGeometry::getGeometryType(), wkbGeometryCollection, wkbLin-
earRing, wkbLineString, wkbMultiPolygon, and wkbPolygon.

210 Class Documentation

13.51.2.10 double OGRGeometryCollection::get_Length () const [virtual]

Compute the length of a multicurve. The length is computed as the sum of the length of all members in
this collection.

Note:

No warning will be issued if a member of the collection does not support the get_Length method.

Returns:

computed area.

References OGRGeometry::getGeometryType(), wkbGeometryCollection, wkbLinearRing, and wk-
bLineString.

13.51.2.11 int OGRGeometryCollection::getDimension () const [virtual]

Get the dimension of this object. This method corresponds to the SFCOM IGeometry::GetDimension()
method. It indicates the dimension of the object, but does not indicate the dimension of the underlying
space (as indicated by OGRGeometry::getCoordinateDimension() (p. ??)).

This method is the same as the C function OGR_G_GetDimension() (p. 2?).

Returns:

0 for points, 1 for lines and 2 for surfaces.

Implements OGRGeometry (p.??).

13.51.2.12 void OGRGeometryCollection::getEnvelope (OGREnvelope3D x psEnvelope) const
[virtual]

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.
This method is the same as the C function OGR_G_GetEnvelope3D() (p. 2?).

Parameters:

psEnvelope the structure in which to place the results.

Since:

OGR 1.9.0

Implements OGRGeometry (p.??).
References OGRGeometry::getEnvelope(), and IsEmpty().

13.51.2.13 void OGRGeometryCollection::getEnvelope (OGREnvelope « psEnvelope) const
[virtual]

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure. This
method is the same as the C function OGR_G_GetEnvelope() (p. ??).

13.51 OGRGeometryCollection Class Reference 211

Parameters:

psEnvelope the structure in which to place the results.

Implements OGRGeometry (p.??).
References OGRGeometry::getEnvelope(), and ISEmpty().

13.51.2.14 const char x OGRGeometryCollection::getGeometryName () const [virtual]

Fetch WKT name for geometry type. There is no SFCOM analog to this method.
This method is the same as the C function OGR_G_GetGeometryName() (p. 2?).

Returns:

name used for this geometry type in well known text format. The returned pointer is to a static internal
string and should not be modified or freed.

Implements OGRGeometry (p.??).

Reimplemented in OGRMultiPolygon (p.??), OGRMultiPoint (p.??), and OGRMultiLineString
(P-??).
Referenced by exportToWkt(), and get_Area().

13.51.2.15 OGRGeometry * OGRGeometryCollection::getGeometryRef (int i)

Fetch geometry from container. This method returns a pointer to an geometry within the container. The
returned geometry remains owned by the container, and should not be modified. The pointer is only valid
untill the next change to the geometry container. Use IGeometry::clone() to make a copy.

This method relates to the SFCOM IGeometryCollection::get_Geometry() method.

Parameters:

i the index of the geometry to fetch, between 0 and getNumGeometries() (p. ??) - 1.

Returns:

pointer to requested geometry.

Referenced by OGRMultiPolygon::clone(), OGRMultiPoint::clone(), OGRMultiLineString::clone(),
OGRGeometry::dumpReadable(), OGRMultiPolygon::exportToWkt(), OGRMultiPoint::exportToWkt(),
OGRMultiLineString::exportToWkt(), OGRGeometryFactory::forceToMultiLineString(), OGRGeom-
etryFactory::forceToMultiPoint(), OGRGeometryFactory::forceToMultiPolygon(), OGRGeometryFac-
tory::forceToPolygon(), OGRMultiPolygon::get_Area(), OGRBuildPolygonFromEdges(), and OGRGe-
ometry::Polygonize().

13.51.2.16 OGRwkbGeometryType OGRGeometryCollection::getGeometryType () const
[virtual]

Fetch geometry type. Note that the geometry type may include the 2.5D flag. To get a 2D flattened version
of the geometry type apply the wkbFlatten() macro to the return result.

This method is the same as the C function OGR_G_GetGeometryType() (p. 2?).

212 Class Documentation

Returns:

the geometry type code.

Implements OGRGeometry (p.??).

Reimplemented in OGRMultiPolygon (p.??), OGRMultiPoint (p.??), and OGRMultiLineString
(p-??7).

References OGRGeometry::getCoordinateDimension(), wkbGeometryCollection, and wkbGeometryCol-
lection25D.

Referenced by closeRings(), and exportToWkb().

13.51.2.17 int OGRGeometryCollection::getNumGeometries () const

Fetch number of geometries in container. This method relates to the SFCOM IGeometryCollect::get_-
NumGeometries() method.

Returns:

count of children geometries. May be zero.

Referenced by OGRMultiPolygon::clone(), OGRMultiPoint::clone(), OGRMultiLineString::clone(),
OGRGeometry::dumpReadable(), OGRMultiPolygon::exportToWkt(), OGRMultiPoint::exportToWkt(),
OGRMultiLineString::exportToWkt(), exportToWkt(), OGRGeometryFactory::forceToMultiLineString(),
OGRGeometryFactory::forceToMultiPoint(), OGRGeometryFactory::forceToMultiPolygon(), OGRGe-
ometryFactory::forceToPolygon(), OGRMultiPolygon::get_Area(), OGRBuildPolygonFromEdges(), and
OGRGeometry::Polygonize().

13.51.2.18 OGRErr OGRGeometryCollection::importFromWkb (unsigned char * pabyData, int
nSize =-1) [virtual]

Assign geometry from well known binary data. The object must have already been instantiated as the
correct derived type of geometry object to match the binaries type. This method is used by the OGRGe-
ometryFactory (p. 2?) class, but not normally called by application code.

This method relates to the SFCOM IWks:: ImportFromWKB() method.
This method is the same as the C function OGR_G_ImportFromWkb() (p. ??).

Parameters:
pabyData the binary input data.

nSize the size of pabyData in bytes, or zero if not known.
Returns:

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p.??).

13.51 OGRGeometryCollection Class Reference 213

13.51.2.19 OGRErr OGRGeometryCollection::importFromWkt (char xx ppszInput)
[virtual]

Assign geometry from well known text data. The object must have already been instantiated as the correct
derived type of geometry object to match the text type. This method is used by the OGRGeometryFactory
(p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks:: ImportFromWKT() method.
This method is the same as the C function OGR_G_ImportFromWkt() (p. 2?).

Parameters:
ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.
Returns:

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p.??).

Reimplemented in OGRMultiPolygon (p.??), OGRMultiPoint (p.??), and OGRMultiLineString
(P-??7).

13.51.2.20 OGRBoolean OGRGeometryCollection::IsEmpty () const [virtual]
Returns TRUE (non-zero) if the object has no points. Normally this returns FALSE except between when
an object is instantiated and points have been assigned.

This method relates to the SFCOM IGeometry::IsEmpty() method.

Returns:

TRUE if object is empty, otherwise FALSE.

Implements OGRGeometry (p.??).
Referenced by OGRMultiPoint::exportToWkt(), and getEnvelope().

13.51.2.21 OGRErr OGRGeometryCollection::removeGeometry (int iGeom, int bDelete = TRUE)
[virtual]

Remove a geometry from the container. Removing a geometry will cause the geometry count to drop by
one, and all "higher" geometries will shuffle down one in index.

There is no SFCOM analog to this method.

This method is the same as the C function OGR_G_RemoveGeometry() (p.??).

Parameters:
iGeom the index of the geometry to delete. A value of -1 is a special flag meaning that all geometries
should be removed.

bDelete if TRUE the geometry will be deallocated, otherwise it will not. The default is TRUE as the
container is considered to own the geometries in it.

214 Class Documentation

Returns:
OGRERR_NONE if successful, or OGRERR_FAILURE if the index is out of range.

Referenced by OGRGeometryFactory::forceToMultiLineString(), OGRGeometryFac-
tory::forceToMultiPoint(), and OGRGeometryFactory::forceToMultiPolygon().

13.51.2.22 void OGRGeometryCollection::segmentize (double dfMaxLength) [virtual]
Modify the geometry such it has no segment longer then the given distance. Interpolated points will have
Z and M values (if needed) set to 0. Distance computation is performed in 2d only

This function is the same as the C function OGR_G_Segmentize() (p. ??)

Parameters:

dfMaxLength the maximum distance between 2 points after segmentization

Reimplemented from OGRGeometry (p.??).

13.51.2.23 void OGRGeometryCollection::setCoordinateDimension (int nNewDimension)
[virtual]

Set the coordinate dimension. This method sets the explicit coordinate dimension. Setting the coordinate
dimension of a geometry to 2 should zero out any existing Z values. Setting the dimension of a geometry
collection will not necessarily affect the children geometries.

Parameters:

nNewDimension New coordinate dimension value, either 2 or 3.

Reimplemented from OGRGeometry (p.??).

References OGRGeometry::setCoordinateDimension().

13.51.2.24 void OGRGeometryCollection::swapXY () [virtual]

Swap x and y coordinates.

Since:

OGR 1.8.0

Reimplemented from OGRGeometry (p.??).

13.51.2.25 OGRErr OGRGeometryCollection::transform (OGRCoordinateTransformation x
poCT) [virtual]

Apply arbitrary coordinate transformation to geometry. This method will transform the coordinates of a
geometry from their current spatial reference system to a new target spatial reference system. Normally
this means reprojecting the vectors, but it could include datum shifts, and changes of units.

Note that this method does not require that the geometry already have a spatial reference system. It will
be assumed that they can be treated as having the source spatial reference system of the OGRCoordi-
nateTransformation (p. ??) object, and the actual SRS of the geometry will be ignored. On successful

13.51 OGRGeometryCollection Class Reference 215

completion the output OGRSpatialReference (p. ??) of the OGRCoordinateTransformation (p. ??) will
be assigned to the geometry.

This method is the same as the C function OGR_G_Transform() (p. ??).

Parameters:

poCT the transformation to apply.

Returns:

OGRERR_NONE on success or an error code.

Implements OGRGeometry (p.??).

References OGRGeometry::assignSpatialReference(), OGRCoordinateTransformation::GetTargetCS(),
and OGRGeometry::transform().

13.51.2.26 int OGRGeometryCollection::WkbSize () const [virtual]

Returns size of related binary representation. This method returns the exact number of bytes required
to hold the well known binary representation of this geometry object. Its computation may be slightly
expensive for complex geometries.

This method relates to the SFCOM IWks::WkbSize() method.
This method is the same as the C function OGR_G_WKkbSize() (p. ??).

Returns:

size of binary representation in bytes.

Implements OGRGeometry (p.??).
References OGRGeometry:: WkbSize().
The documentation for this class was generated from the following files:

* ogr_geometry.h
* ogrgeometrycollection.cpp

216 Class Documentation

13.52 OGRGeometryFactory Class Reference

#include <ogr_geometry.h>

Static Public Member Functions
* static OGREir createFromWkb (unsigned char ¥, OGRSpatialReference x, OGRGeometry s,
int=-1)

Create a geometry object of the appropriate type from it’s well known binary representation.

* static OGRErr createFromWkt (char #x, OGRSpatialReference x, OGRGeometry x:x)
Create a geometry object of the appropriate type from it’s well known text representation.
« static OGRErr createFromFgf (unsigned char x, OGRSpatialReference x, OGRGeometry xx,
int=-1, int x=NULL)
Create a geometry object of the appropriate type from it’s FGF (FDO Geometry Format) binary represen-

tation.

* static OGRGeometry * createFromGML (const char %)
Create geometry from GML.

« static void destroyGeometry (OGRGeometry x)

Destroy geometry object.

« static OGRGeometry * createGeometry (OGRwkbGeometryType)

Create an empty geometry of desired type.

* static OGRGeometry * forceToPolygon (OGRGeometry)

Convert to polygon.

« static OGRGeometry * forceToMultiPolygon (OGRGeometry x)

Convert to multipolygon.

¢ static OGRGeometry * forceToMultiPoint (OGRGeometry)

Convert to multipoint.

« static OGRGeometry * forceToMultiLineString (OGRGeometry x)

Convert to multilinestring.

* static OGRGeometry * organizePolygons (OGRGeometry +xpapoPolygons, int nPolygonCount,
int xpbResultValidGeometry, const char *xpapszOptions=NULL)

Organize polygons based on geometries.

e static int haveGEOS ()
Test if GEOS enabled.

« static OGRGeometry x approximateArcAngles (double dfX, double dfY, double dfZ, double dfPri-
maryRadius, double dfSecondaryAxis, double dfRotation, double dfStartAngle, double dfEndAngle,
double dfMaxAngleStepSizeDegrees)

13.52 OGRGeometryFactory Class Reference 217

13.52.1 Detailed Description

Create geometry objects from well known text/binary.

13.52.2 Member Function Documentation

13.52.2.1 OGRGeometry x OGRGeometryFactory::approximateArcAngles (double
dfCenterX, double dfCenterY, double dfZ, double dfPrimaryRadius, double
dfSecondaryRadius, double dfRotation, double dfStartAngle, double dfEndAngle,
double dfMaxAngleStepSizeDegrees) [static]

Stroke arc to linestring.

Stroke an arc of a circle to a linestring based on a center point, radius, start angle and end angle, all angles
in degrees.

If the dfMaxAngleStepSizeDegrees is zero, then a default value will be used. This is currently 4 degrees
unless the user has overridden the value with the OGR_ARC_STEPSIZE configuration variable.

See also:

CPLSetConfigOption() (p. ??)

Parameters:

dfCenterX center X

dfCenterY center Y

dfZ center Z

dfPrimaryRadius X radius of ellipse.

dfSecondaryRadius Y radius of ellipse.

dfRotation rotation of the ellipse clockwise.

dfStartAngle angle to first point on arc (clockwise of X-positive)

dfEndAngle angle to last point on arc (clockwise of X-positive)

dfMaxAngleStepSizeDegrees the largest step in degrees along the arc, zero to use the default setting.

Returns:

OGRLineString (p. ??) geometry representing an approximation of the arc.

Since:

OGR 1.8.0

References OGRLineString::setPoint().
Referenced by OGR_G_ApproximateArcAngles().

13.52.2.2 OGRErr OGRGeometryFactory::createFromFgf (unsigned char * pabyData,
OGRSpatialReference * poSR, OGRGeometry *x ppoReturn, int nBytes = -1, int x
pnBytesConsumed = NULL) [static]

Create a geometry object of the appropriate type from it’s FGF (FDO Geometry Format) binary represen-
tation. Also note that this is a static method, and that there is no need to instantiate an OGRGeometry-
Factory (p. ??) object.

218 Class Documentation

The C function OGR_G_CreateFromFgf() is the same as this method.

Parameters:

pabyData pointer to the input BLOB data.

poSR pointer to the spatial reference to be assigned to the created geometry object. This may be
NULL.

ppoReturn the newly created geometry object will be assigned to the indicated pointer on return. This
will be NULL in case of failure.

nBytes the number of bytes available in pabyData.
pnBytesConsumed if not NULL, it will be set to the number of bytes consumed (at most nBytes).

Returns:

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

13.52.2.3 OGRGeometry *+ OGRGeometryFactory::createFromGML (const char * pszData)
[static]

Create geometry from GML. This method translates a fragment of GML containing only the geometry
portion into a corresponding OGRGeometry (p. ??). There are many limitations on the forms of GML
geometries supported by this parser, but they are too numerous to list here.

The following GML2 elements are parsed : Point, LineString, Polygon, MultiPoint, MultiLineString, Mul-
tiPolygon, MultiGeometry.

(OGR >= 1.8.0) The following GML3 elements are parsed : Surface, MultiSurface, PolygonPatch, Tri-
angle, Rectangle, Curve, MultiCurve, LineStringSegment, Arc, Circle, CompositeSurface, OrientableSur-
face, Solid, Tin, TriangulatedSurface.

Arc and Circle elements are stroked to linestring, by using a 4 degrees step, unless the user has overridden
the value with the OGR_ARC_STEPSIZE configuration variable.

The C function OGR_G_CreateFromGML() (p. ??) is the same as this method.

Parameters:

pszData The GML fragment for the geometry.

Returns:

a geometry on succes, or NULL on error.

13.52.2.4 OGRErr OGRGeometryFactory::createFromWkb (unsigned char * pabyData,
OGRSpatialReference « poSR, OGRGeometry * ppoReturn, int nBytes = —1)
[static]

Create a geometry object of the appropriate type from it’s well known binary representation. Note that if
nBytes is passed as zero, no checking can be done on whether the pabyData is sufficient. This can result in
a crash if the input data is corrupt. This function returns no indication of the number of bytes from the data
source actually used to represent the returned geometry object. Use OGRGeometry::WkbSize() (p. ??)
on the returned geometry to establish the number of bytes it required in WKB format.

13.52 OGRGeometryFactory Class Reference 219

Also note that this is a static method, and that there is no need to instantiate an OGRGeometryFactory
(p- ??) object.

The C function OGR_G_CreateFromWkb() (p. ??) is the same as this method.

Parameters:

pabyData pointer to the input BLOB data.

poSR pointer to the spatial reference to be assigned to the created geometry object. This may be
NULL.

ppoReturn the newly created geometry object will be assigned to the indicated pointer on return. This
will be NULL in case of failure.

nBytes the number of bytes available in pabyData, or -1 if it isn’t known.

Returns:

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

References = OGRGeometry::assignSpatialReference(), createGeometry(), and OGRGeome-
try::importFromWXkb().

Referenced by OGR_G_CreateFromWkb().

13.52.2.5 OGRErr OGRGeometryFactory::createFromWkt (char xx ppszData,
OGRSpatialReference « poSR, OGRGeometry xx ppoReturn) [static]

Create a geometry object of the appropriate type from it’s well known text representation. The C function
OGR_G_CreateFromWkt() (p. ??) is the same as this method.

Parameters:
ppszData input zero terminated string containing well known text representation of the geometry to
be created. The pointer is updated to point just beyond that last character consumed.

poSR pointer to the spatial reference to be assigned to the created geometry object. This may be
NULL.

ppoReturn the newly created geometry object will be assigned to the indicated pointer on return. This
will be NULL if the method fails.

Example:
const char* wkt= "POINT (O 0)";

// cast because OGR_G_CreateFromWkt will move the pointer
charx pszWkt = (charx) wkt;

OGRSpatialReferenceH ref = OSRNewSpatialReference (NULL);
OGRGeometryH new_geom;

OGRErr err = OGR_G_CreateFromWkt (&pszWkt, ref, &new_geom);

Returns:
OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.
References OGRGeometry::assignSpatialReference(), and OGRGeometry::importFromWkt().
Referenced by OGR_G_CreateFromWkt().

220 Class Documentation

13.52.2.6 OGRGeometry x+ OGRGeometryFactory::createGeometry (OGRwkbGeometryType
eGeometryType) [static]

Create an empty geometry of desired type. This is equivelent to allocating the desired geometry with new,
but the allocation is guaranteed to take place in the context of the GDAL/OGR heap.
This method is the same as the C function OGR_G_CreateGeometry() (p.??).

Parameters:

eGeometryType the type code of the geometry class to be instantiated.

Returns:

the newly create geometry or NULL on failure.

References wkbGeometryCollection, wkbLinearRing, wkbLineString, wkbMultiLineString, wkbMulti-
Point, wkbMultiPolygon, wkbPoint, and wkbPolygon.

Referenced by createFromWkb(), and OGR_G_CreateGeometry().

13.52.2.7 void OGRGeometryFactory::destroyGeometry (OGRGeometry x poGeom) [static]
Destroy geometry object. Equivalent to invoking delete on a geometry, but it guaranteed to take place
within the context of the GDAL/OGR heap.

This method is the same as the C function OGR_G_DestroyGeometry() (p. 2?).

Parameters:

poGeom the geometry to deallocate.

Referenced by OGR_G_DestroyGeometry().

13.52.2.8 OGRGeometry *+ OGRGeometryFactory::forceToMultiLineString (OGRGeometry
poGeom) [static]

Convert to multilinestring. Tries to force the provided geometry to be a multilinestring.

* linestrings are placed in a multilinestring.
* geometry collections will be converted to multilinestring if they only contain linestrings.

 polygons will be changed to a collection of linestrings (one per ring).

The passed in geometry is consumed and a new one returned (or potentially the same one).

Returns:

new geometry.

References OGRMultiLineString::addGeometryDirectly(), OGRLineString::addSubLineString(),
OGRPolygon::getExteriorRing(), OGRGeometryCollection::getGeometryRef(), OGR-
Geometry::getGeometryType(), OGRPolygon::getInteriorRing(), OGRGeometryCollec-
tion::getNumGeometries(), OGRPolygon::getNumlnteriorRings(), OGRLineString::getNumPoints(),
OGRGeometryCollection::removeGeometry(), wkbGeometryCollection, wkbLineString, wkbMulti-
LineString, wkbMultiPolygon, and wkbPolygon.

Referenced by OGR_G_ForceToMultiLineString().

13.52 OGRGeometryFactory Class Reference 221

13.52.2.9 OGRGeometry + OGRGeometryFactory::forceToMultiPoint (OGRGeometry
poGeom) [static]

Convert to multipoint. Tries to force the provided geometry to be a multipoint. Currently this just effects
a change on points. The passed in geometry is consumed and a new one returned (or potentially the same
one).

Returns:

new geometry.

References =~ OGRMultiPoint::addGeometryDirectly(), =~ OGRGeometryCollection::getGeometryRef(),
OGRGeometry::getGeometryType(), OGRGeometryCollection::getNumGeometries(), OGRGeome-
tryCollection::removeGeometry(), wkbGeometryCollection, wkbMultiPoint, and wkbPoint.

Referenced by OGR_G_ForceToMultiPoint().

13.52.2.10 OGRGeometry x OGRGeometryFactory::forceToMultiPolygon (OGRGeometry x
poGeom) [static]

Convert to multipolygon. Tries to force the provided geometry to be a multipolygon. Currently this just
effects a change on polygons. The passed in geometry is consumed and a new one returned (or potentially
the same one).

Returns:

new geometry.

References OGRMultiPolygon::addGeometryDirectly(), OGRGeometryCollection::getGeometryRef(),
OGRGeometry::getGeometryType(), OGRGeometryCollection::getNumGeometries(), ~OGRGeome-
tryCollection::removeGeometry(), wkbGeometryCollection, wkbMultiPolygon, and wkbPolygon.

Referenced by OGR_G_ForceToMultiPolygon().

13.52.2.11 OGRGeometry x OGRGeometryFactory::forceToPolygon (OGRGeometry x poGeom)
[static]

Convert to polygon. Tries to force the provided geometry to be a polygon. Currently this just effects a
change on multipolygons. The passed in geometry is consumed and a new one returned (or potentially the
same one).

Parameters:

poGeom the input geometry - ownership is passed to the method.

Returns:

new geometry.

References ~ OGRPolygon::addRing(), OGRPolygon::getExteriorRing(), OGRGeometryCollec-
tion::getGeometryRef(), OGRGeometry::getGeometryType(), OGRPolygon::getInteriorRing(), OGRGe-
ometryCollection::getNumGeometries(), OGRPolygon::getNumlInteriorRings(), wkbGeometryCollection,
wkbMultiPolygon, and wkbPolygon.

Referenced by OGR_G_ForceToPolygon().

222 Class Documentation

13.52.2.12 int OGRGeometryFactory::haveGEOS () [static]

Test if GEOS enabled. This static method returns TRUE if GEOS support is built into OGR, otherwise it
returns FALSE.

Returns:

TRUE if available, otherwise FALSE.

Referenced by organizePolygons().

13.52.2.13 OGRGeometry x OGRGeometryFactory::organizePolygons (OGRGeometry x:x
papoPolygons, int nPolygonCount, int x pblsValidGeometry, const char xx papszOptions
=NULL) [static]

Organize polygons based on geometries. Analyse a set of rings (passed as simple polygons), and based on
a geometric analysis convert them into a polygon with inner rings, or a MultiPolygon if dealing with more
than one polygon.

All the input geometries must be OGRPolygons with only a valid exterior ring (at least 4 points) and no
interior rings.

The passed in geometries become the responsibility of the method, but the papoPolygons "pointer array"
remains owned by the caller.

For faster computation, a polygon is considered to be inside another one if a single point of its external ring
is included into the other one. (unless ’'OGR_DEBUG_ORGANIZE_POLYGONS’ configuration option is
set to TRUE. In that case, a slower algorithm that tests exact topological relationships is used if GEOS is
available.)

In cases where a big number of polygons is passed to this function, the default processing may be really
slow. You can skip the processing by adding METHOD=SKIP to the option list (the result of the function
will be a multi-polygon with all polygons as toplevel polygons) or only make it analyze counterclockwise
polygons by adding METHOD=ONLY_CCW to the option list if you can assume that the outline of holes
is counterclockwise defined (this is the convention for shapefiles e.g.)

If the OGR_ORGANIZE_POLYGONS configuration option is defined, its value will override the value of
the METHOD option of papszOptions (usefull to modify the behaviour of the shapefile driver)

Parameters:

papoPolygons array of geometry pointers - should all be OGRPolygons. Ownership of the geometries
is passed, but not of the array itself.

nPolygonCount number of items in papoPolygons

pbIsValidGeometry value will be set TRUE if result is valid or FALSE otherwise.

papszOptions a list of strings for passing options

Returns:

a single resulting geometry (either OGRPolygon (p. ??) or OGRMultiPolygon (p. ??)).

References OGRPolygon::addRing(), OGRPolygon::exportToWkt(), OGRPolygon::get_Area(), OGR-
Geometry::getEnvelope(), OGRPolygon::getExteriorRing(), OGRLineString::getNumPoints(), OGR-
LineString::getPoint(), haveGEOS(), OGRLinearRing::isClockwise(), OGRGeometry::Overlaps(), and
wkbPolygon.

The documentation for this class was generated from the following files:

13.52 OGRGeometryFactory Class Reference 223

* ogr_geometry.h
* ogrgeometryfactory.cpp

224 Class Documentation

13.53 OGRLayer Class Reference

#include <ogrsf_frmts.h>Inheritance diagram for OGRLayer::

\ OGRLayer \

T

‘ OGRGenSQL ResultsLayer ‘

Public Member Functions

* virtual OGRGeometry x GetSpatialFilter ()

This method returns the current spatial filter for this layer.

« virtual void SetSpatialFilter (OGRGeometry x)

Set a new spatial filter.

* virtual void SetSpatialFilterRect (double dfMinX, double dfMinY, double dfMaxX, double df-
MaxY)

Set a new rectangular spatial filter.

« virtual OGRErr SetAttributeFilter (const char x)

Set a new attribute query.

* virtual void ResetReading ()=0

Reset feature reading to start on the first feature.

¢ virtual OGRFeature * GetNextFeature ()=0

Fetch the next available feature from this layer.

« virtual OGRErr SetNextByIndex (long nIndex)

Move read cursor to the nilndex’th feature in the current resultset.

« virtual OGRFeature * GetFeature (long nFID)
Fetch a feature by its identifier.

« virtual OGRErr SetFeature (OGRFeature xpoFeature)

Rewrite an existing feature.

¢ virtual OGRErr CreateFeature (OGRFeature «poFeature)

Create and write a new feature within a layer.

* virtual OGRErr DeleteFeature (long nFID)

Delete feature from layer.

e virtual const char x GetName ()

Return the layer name.

13.53 OGRLayer Class Reference 225

¢ virtual OGRwkbGeometryType GetGeomType ()
Return the layer geometry type.

¢ virtual OGRFeatureDefn x GetLayerDefn ()=0

Fetch the schema information for this layer.

« virtual OGRSpatialReference « GetSpatialRef ()

Fetch the spatial reference system for this layer.

¢ virtual int GetFeatureCount (int bForce=TRUE)

Fetch the feature count in this layer.

« virtual OGRErr GetExtent (OGREnvelope xpsExtent, int bForce=TRUE)
Fetch the extent of this layer.

« virtual int TestCapability (const char *x)=0
Test if this layer supported the named capability.

e virtual const char *x GetInfo (const char *)

Fetch metadata from layer.

* virtual OGRE«r CreateField (OGRFieldDefn «poField, int bApproxOK=TRUE)

Create a new field on a layer.

e virtual OGRErr DeleteField (int iField)

Delete an existing field on a layer.

¢ virtual OGRErr ReorderFields (int spanMap)
Reorder all the fields of a layer.

« virtual OGRErr AlterFieldDefn (int iField, OGRFieldDefn xpoNewFieldDefn, int nFlags)

Alter the definition of an existing field on a layer.

« virtual OGRErr SyncToDisk ()
Flush pending changes to disk.

« virtual OGRStyleTable « GetStyleTable ()

Returns layer style table.

« virtual void SetStyleTableDirectly (OGRStyleTable «xpoStyleTable)
Set layer style table.

* virtual void SetStyleTable (OGRStyleTable xpoStyleTable)
Set layer style table.

e virtual const char * GetFIDColumn ()

"

This method returns the name of the underlying database column being used as the FID column, or
supported.

if not

* virtual const char * GetGeometryColumn ()

226 Class Documentation

"

This method returns the name of the underlying database column being used as the geometry column, or
if not supported.

« virtual OGRErr SetIgnoredFields (const char #xpapszFields)

Set which fields can be omitted when retrieving features from the layer.

¢ int Reference ()

Increment layer reference count.

¢ int Dereference ()

Decrement layer reference count.

¢ int GetRefCount () const

Fetch reference count.

¢ OGRErr ReorderField (int iOldFieldPos, int iNewFieldPos)

Reorder an existing field on a layer:

13.53.1 Detailed Description

This class represents a layer of simple features, with access methods.

13.53.2 Member Function Documentation

13.53.2.1 OGRErr OGRLayer::AlterFieldDefn (int iField, OGRFieldDefn « poNewFieldDefn, int
nFlags) [virtual]

Alter the definition of an existing field on a layer. You must use this to alter the definition of an existing
field of a real layer. Internally the OGRFeatureDefn (p.??) for the layer will be updated to reflect the
altered field. Applications should never modify the OGRFeatureDefn (p. ??) used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created
with the previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCAlterField-
Defn capability. Some drivers may only support this method while there are still no features in the layer.
When it is supported, the existings features of the backing file/database should be updated accordingly.
Some drivers might also not support all update flags.

This function is the same as the C function OGR_L_AlterFieldDefn() (p. 2?).

Parameters:

iField index of the field whose definition must be altered.

poNewFieldDefn new field definition

nFlags combination of ALTER_NAME_FLAG, ALTER_TYPE_FLAG and ALTER_WIDTH._-
PRECISION_FLAG to indicate which of the name and/or type and/or width and precision fields
from the new field definition must be taken into account.

Returns:

OGRERR_NONE on success.

13.53 OGRLayer Class Reference 227

Since:

OGR 1.9.0

13.53.2.2 OGRErr OGRLayer::CreateFeature (OGRFeature * poFeature) [virtual]

Create and write a new feature within a layer. The passed feature is written to the layer as a new feature,
rather than overwriting an existing one. If the feature has a feature id other than OGRNulIFID, then the
native implementation may use that as the feature id of the new feature, but not necessarily. Upon successful
return the passed feature will have been updated with the new feature id.

This method is the same as the C function OGR_L_CreateFeature() (p. 2?).

Parameters:

poFeature the feature to write to disk.

Returns:

OGRERR_NONE on success.

Referenced by OGRDataSource::CopyLayer().

13.53.2.3 OGRErr OGRLayer::CreateField (OGRFieldDefn x poField, int bApproxOK = TRUE)
[virtual]

Create a new field on a layer. You must use this to create new fields on a real layer. Internally the OGRFea-
tureDefn (p. ??) for the layer will be updated to reflect the new field. Applications should never modify
the OGRFeatureDefn (p. ??) used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created
with the previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCCreateField
capability. Some drivers may only support this method while there are still no features in the layer. When
it is supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_CreateField() (p. ??).

Parameters:

poField field definition to write to disk.

bApproxOK 1f TRUE, the field may be created in a slightly different form depending on the limitations
of the format driver.

Returns:

OGRERR_NONE on success.

Referenced by OGRDataSource::CopyLayer().

13.53.2.4 OGRErr OGRLayer::DeleteFeature (long nFID) [virtual]

Delete feature from layer. The feature with the indicated feature id is deleted from the layer if supported
by the driver. Most drivers do not support feature deletion, and will return OGRERR_UNSUPPORTED_-
OPERATION. The TestCapability() (p. ??) layer method may be called with OLCDeleteFeature to check
if the driver supports feature deletion.

228 Class Documentation

This method is the same as the C function OGR_L_DeleteFeature() (p. ??).

Parameters:

nFID the feature id to be deleted from the layer

Returns:

OGRERR_NONE on success.

13.53.2.5 OGRErr OGRLayer::DeleteField (int iField) [virtual]

Delete an existing field on a layer. You must use this to delete existing fields on a real layer. Internally
the OGRFeatureDefn (p. ??) for the layer will be updated to reflect the deleted field. Applications should
never modify the OGRFeatureDefn (p. ??) used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created
with the previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCDeleteField
capability. Some drivers may only support this method while there are still no features in the layer. When
it is supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_DeleteField() (p. ??).

Parameters:

iField index of the field to delete.

Returns:

OGRERR_NONE on success.

Since:

OGR 1.9.0

13.53.2.6 int OGRLayer::Dereference ()
Decrement layer reference count. This method is the same as the C function OGR_L_Dereference().

Returns:

the reference count after decrementing.

13.53.2.7 OGRErr OGRLayer::GetExtent (OGREnvelope * psExtent, int bForce = TRUE)
[virtual]

Fetch the extent of this layer. Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and
it would be expensive to establish the extent then OGRERR_FAILURE will be returned indicating that the
extent isn’t know. If bForce is TRUE then some implementations will actually scan the entire layer once to
compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is
safer to call GetExtent() (p. ??) without setting a spatial filter.

13.53 OGRLayer Class Reference 229

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents
could be collected.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetExtent() (p. ??).

Parameters:

psExtent the structure in which the extent value will be returned.

bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns:

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented in OGRGenSQLResultsLayer (p.??).

References OGRGeometry::getEnvelope(), OGRFeature::GetGeometryRef(), GetGeomType(), GetLay-
erDefn(), GetNextFeature(), OGRGeometry::IsEmpty(), ResetReading(), and wkbNone.

Referenced by OGRGenSQLResultsLayer::GetExtent().

13.53.2.8 OGRFeature + OGRLayer::GetFeature (long nFID) [virtual]
Fetch a feature by its identifier. This function will attempt to read the identified feature. The nFID value
cannot be OGRNulIFID. Success or failure of this operation is unaffected by the spatial or attribute filters.

If this method returns a non-NULL feature, it is guaranteed that its feature id (OGRFeature::GetFID()
(p- ??)) will be the same as nFID.

Use OGRLayer::TestCapability(OLCRandomRead) to establish if this layer supports efficient random ac-
cess reading via GetFeature() (p.??); however, the call should always work if the feature exists as a
fallback implementation just scans all the features in the layer looking for the desired feature.

Sequential reads are generally considered interrupted by a GetFeature() (p. ??) call.
The returned feature should be free with OGRFeature::DestroyFeature() (p. ??).
This method is the same as the C function OGR_L_GetFeature() (p. ??).

Parameters:

nFID the feature id of the feature to read.

Returns:

a feature now owned by the caller, or NULL on failure.

Reimplemented in OGRGenSQLResultsLayer (p.??).
References OGRFeature::GetFID(), GetNextFeature(), and ResetReading().
Referenced by OGRGenSQLResultsLayer::GetFeature().

13.53.2.9 int OGRLayer::GetFeatureCount (int bForce = TRUE) [virtual]

Fetch the feature count in this layer. Returns the number of features in the layer. For dynamic databases
the count may not be exact. If bForce is FALSE, and it would be expensive to establish the feature count a

230 Class Documentation

value of -1 may be returned indicating that the count isn’t know. If bForce is TRUE some implementations
will actually scan the entire layer once to count objects.

The returned count takes the spatial filter into account.
Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetFeatureCount() (p. ??).

Parameters:

bForce Flag indicating whether the count should be computed even if it is expensive.

Returns:

feature count, -1 if count not known.

Reimplemented in OGRGenSQLResultsLayer (p.??).
References GetNextFeature(), and ResetReading().
Referenced by OGRGenSQLResultsLayer::GetFeatureCount().

13.53.2.10 const char x OGRLayer::GetFIDColumn () [virtual]

This method returns the name of the underlying database column being used as the FID column, or "" if
not supported. This method is the same as the C function OGR_L_GetFIDColumn() (p. ??).

Returns:

fid column name.

13.53.2.11 const char « OGRLayer::GetGeometryColumn () [virtual]

This method returns the name of the underlying database column being used as the geometry column, or
"" if not supported. This method is the same as the C function OGR_L_GetGeometryColumn() (p. ??).

Returns:

geometry column name.

13.53.2.12 OGRwkbGeometryType OGRLayer::GetGeomType () [virtual]

Return the layer geometry type. This returns the same result as GetLayerDefn() (p. ??)->GetGeomType()
(p-??), but for a few drivers, calling GetGeomType() (p.??) directly can avoid lengthy layer definition
initialization.

This method is the same as the C function OGR_L_GetGeomType() (p. ??).

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()
(p- 27)->GetGeomType() (p. ??).

Returns:

the geometry type

13.53 OGRLayer Class Reference 231

Since:

OGR 1.8.0

References OGRFeatureDefn::GetGeomType(), and GetLayerDefn().
Referenced by GetExtent().

13.53.2.13 const char * OGRLayer::GetInfo (const char * pszTag) [virtual]

Fetch metadata from layer. This method can be used to fetch various kinds of metadata or layer specific
information encoded as a string. It is anticipated that various tag values will be defined with well known
semantics, while other tags will be used for driver/application specific purposes.

This method is deprecated and will be replaced with a more general metadata model in the future. At this
time no drivers return information via the GetInfo() (p. ??) call.
Parameters:

pszTag the tag for which information is being requested.

Returns:

the value of the requested tag, or NULL if that tag does not have a value, or is unknown.

Deprecated

13.53.2.14 OGRFeatureDefn + OGRLayer::GetLayerDefn () [pure virtual]

Fetch the schema information for this layer. The returned OGRFeatureDefn (p.??) is owned by the
OGRLayer (p.??), and should not be modified or freed by the application. It encapsulates the attribute
schema of the features of the layer.

This method is the same as the C function OGR_L_GetLayerDefn() (p. 2?).

Returns:

feature definition.

Implemented in OGRGenSQLResultsLayer (p.??).

Referenced by OGRSFDriver::CopyDataSource(), = OGRDataSource::CopyLayer(), = OGRData-
Source::ExecuteSQL(), GetExtent(), GetGeomType(), GetName(), ReorderField(), SetAttributeFilter(),
and SetlgnoredFields().

13.53.2.15 const char « OGRLayer::GetName () [virtual]

Return the layer name. This returns the same content as GetLayerDefn() (p. ??)->GetName() (p. ??), but
for a few drivers, calling GetName() (p. ??) directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetName() (p. ??).

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()
(p- 27)->GetName() (p. ??).

232 Class Documentation

Returns:

the layer name (must not been freed)

Since:

OGR 1.8.0

References GetLayerDefn(), and OGRFeatureDefn::GetName().
Referenced by OGRDataSource::GetLayerByName().

13.53.2.16 OGRFeature x OGRLayer::GetNextFeature () [pure virtual]

Fetch the next available feature from this layer. The returned feature becomes the responsiblity of the caller
to delete with OGRFeature::DestroyFeature() (p.??). It is critical that all features associated with an
OGRLayer (p. ??) (more specifically an OGRFeatureDefn (p. ??)) be deleted before that layer/datasource
is deleted.

Only features matching the current spatial filter (set with SetSpatialFilter() (p. ??)) will be returned.

This method implements sequential access to the features of a layer. The ResetReading() (p. ??) method
can be used to start at the beginning again.

This method is the same as the C function OGR_L_GetNextFeature() (p. ??).

Returns:

a feature, or NULL if no more features are available.

Implemented in OGRGenSQLResultsLayer (p.??).

Referenced by OGRDataSource::CopyLayer(), GetExtent(), GetFeature(), GetFeatureCount(), OGRGen-
SQLResultsLayer::GetNextFeature(), and SetNextBylIndex().

13.53.2.17 int OGRLayer::GetRefCount () const
Fetch reference count. This method is the same as the C function OGR_L_GetRefCount().

Returns:

the current reference count for the layer object itself.

Referenced by OGRDataSource::GetSummaryRefCount().

13.53.2.18 OGRGeometry « OGRLayer::GetSpatialFilter () [virtual]

This method returns the current spatial filter for this layer. The returned pointer is to an internally owned
object, and should not be altered or deleted by the caller.

This method is the same as the C function OGR_L_GetSpatialFilter() (p. ??).

Returns:

spatial filter geometry.

Reimplemented in OGRGenSQLResultsLayer (p.??).

13.53 OGRLayer Class Reference 233

13.53.2.19 OGRSpatialReference «+ OGRLayer::GetSpatialRef () [inline, wvirtual]
Fetch the spatial reference system for this layer. The returned object is owned by the OGRLayer (p. ??)

and should not be modified or freed by the application.
This method is the same as the C function OGR_L_GetSpatialRef() (p. 2?).

Returns:

spatial reference, or NULL if there isn’t one.

Reimplemented in OGRGenSQLResultsLayer (p.??).
Referenced by OGRDataSource::CopyLayer(), and OGRGenSQLResultsLayer::GetSpatialRef().

13.53.2.20 OGRStyleTable «+ OGRLayer::GetStyleTable () [virtual]

Returns layer style table. This method is the same as the C function OGR_L_GetStyleTable().

Returns:

pointer to a style table which should not be modified or freed by the caller.

13.53.2.21 int OGRLayer::Reference ()

Increment layer reference count. This method is the same as the C function OGR_L_Reference().

Returns:

the reference count after incrementing.

13.53.2.22 OGRErr OGRLayer::ReorderField (int iOldFieldPos, int iNewFieldPos)

Reorder an existing field on a layer. This method is a conveniency wrapper of ReorderFields() (p.??)
dedicated to move a single field. It is a non-virtual method, so drivers should implement ReorderFields()
(p.- ??) instead.

You must use this to reorder existing fields on a real layer. Internally the OGRFeatureDefn (p. ??) for
the layer will be updated to reflect the reordering of the fields. Applications should never modify the
OGRFeatureDefn (p. ??) used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created
with the previous layer definition.

The field definition that was at initial position iOldFieldPos will be moved at position iNewFieldPos, and
elements between will be shuffled accordingly.

For example, let suppose the fields were "0","1","2","3","4" initially. ReorderField(1, 3) will reorder them
aS YIO||’V|2||’II3||’II 1 ||’ll4||-
Not all drivers support this method. You can query a layer to check if it supports it with the OLCReorder-

Fields capability. Some drivers may only support this method while there are still no features in the layer.
When it is supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_ReorderField() (p. ??).

234 Class Documentation

Parameters:
i0OldFieldPos previous position of the field to move. Must be in the range [0,GetFieldCount()-1].
iNewFieldPos new position of the field to move. Must be in the range [0,GetFieldCount()-1].
Returns:

OGRERR_NONE on success.

Since:

OGR 1.9.0

References OGRFeatureDefn::GetFieldCount(), GetLayerDefn(), and ReorderFields().

13.53.2.23 OGRErr OGRLayer::ReorderFields (int + panMap) [virtual]

Reorder all the fields of a layer. You must use this to reorder existing fields on a real layer. Internally the
OGRFeatureDefn (p. ??) for the layer will be updated to reflect the reordering of the fields. Applications
should never modify the OGRFeatureDefn (p. ??) used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created
with the previous layer definition.

panMap is such that,for each field definition at position i after reordering, its position before reordering
was panMapl[i].

For example, let suppose the fields were "0","1","2","3","4" initially. ReorderFields([0,2,3,1,4]) will re-
Order them aS IIOII’IIZII’II3II’II1",”4"'

Not all drivers support this method. You can query a layer to check if it supports it with the OLCReorder-
Fields capability. Some drivers may only support this method while there are still no features in the layer.
When it is supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_ReorderFields() (p. ??).

Parameters:

panMap an array of GetLayerDefn() (p. ??)->GetFieldCount() elements which is a permutation of
[0, GetLayerDefn() (p. ??)->GetFieldCount()-1].

Returns:
OGRERR_NONE on success.

Since:

OGR 1.9.0

Referenced by ReorderField().

13.53.2.24 void OGRLayer::ResetReading () [pure virtual]

Reset feature reading to start on the first feature. This affects GetNextFeature() (p. ??).
This method is the same as the C function OGR_L_ResetReading() (p. ??).
Implemented in OGRGenSQLResultsLayer (p.??).

Referenced by OGRDataSource::CopyLayer(), GetExtent(), GetFeature(), GetFeatureCount(), OGRGen-
SQLResultsLayer::ResetReading(), SetAttributeFilter(), SetNextByIndex(), and SetSpatialFilter().

13.53 OGRLayer Class Reference 235

13.53.2.25 OGRErr OGRLayer::SetAttributeFilter (const char * pszQuery) [virtual]
Set a new attribute query. This method sets the attribute query string to be used when fetching features via
the GetNextFeature() (p. ??) method. Only features for which the query evaluates as true will be returned.

The query string should be in the format of an SQL WHERE clause. For instance "population > 1000000
and population < 5000000" where population is an attribute in the layer. The query format is normally a
restricted form of SQL WHERE clause as described in the "WHERE" section of the OGR SQL tutorial. In
some cases (RDBMS backed drivers) the native capabilities of the database may be used to interprete the
WHERE clause in which case the capabilities will be broader than those of OGR SQL.

Note that installing a query string will generally result in resetting the current reading position (ala Rese-
tReading() (p. ??)).

This method is the same as the C function OGR_L_SetAttributeFilter() (p. 2?).

Parameters:

pszQuery query in restricted SQL WHERE format, or NULL to clear the current query.

Returns:
OGRERR_NONE if successfully installed, or an error code if the query expression is in error, or some
other failure occurs.

References GetLayerDefn(), and ResetReading().

Referenced by OGRGenSQLResultsLayer::ResetReading().

13.53.2.26 OGRErr OGRLayer::SetFeature (OGRFeature x poFeature) [virtual]
Rewrite an existing feature. This method will write a feature to the layer, based on the feature id within the
OGREFeature (p.??).

Use OGRLayer::TestCapability(OLCRandomWrite) to establish if this layer supports random access writ-
ing via SetFeature() (p. ??).

This method is the same as the C function OGR_L_SetFeature() (p. ??).

Parameters:

poFeature the feature to write.

Returns:

OGRERR_NONE if the operation works, otherwise an appropriate error code.

13.53.2.27 OGRErr OGRLayer::SetlgnoredFields (const char xx papszFields) [virtual]

Set which fields can be omitted when retrieving features from the layer. If the driver supports this function-
ality (testable using OLClIgnoreFields capability), it will not fetch the specified fields in subsequent calls
to GetFeature() (p. ??) / GetNextFeature() (p. ??) and thus save some processing time and/or bandwidth.

Besides field names of the layers, the following special fields can be passed: "OGR_GEOMETRY" to
ignore geometry and "OGR_STYLE" to ignore layer style.

By default, no fields are ignored.
This method is the same as the C function OGR_L_SetIgnoredFields() (p.??)

236 Class Documentation

Parameters:
papszFields an array of field names terminated by NULL item. If NULL is passed, the ignored list is
cleared.
Returns:

OGRERR_NONE if all field names have been resolved (even if the driver does not support this
method)

References OGRFeatureDefn::GetFieldCount(), = OGRFeatureDefn::GetFieldDefn(), = OGRFeature-
Defn::GetFieldIndex(), GetLayerDefn(), = OGRFeatureDefn::SetGeometrylgnored(), = OGRField-
Defn::Setlgnored(), and OGRFeatureDefn::SetStylelgnored().

13.53.2.28 OGRErr OGRLayer::SetNextByIndex (long nlndex) [virtuall]

Move read cursor to the nIndex’th feature in the current resultset. This method allows positioning of a layer
such that the GetNextFeature() (p. ??) call will read the requested feature, where nlndex is an absolute
index into the current result set. So, setting it to 3 would mean the next feature read with GetNextFeature()
(p- ??) would have been the 4th feature to have been read if sequential reading took place from the beginning
of the layer, including accounting for spatial and attribute filters.

Only in rare circumstances is SetNextByIndex() (p. ??) efficiently implemented. In all other cases the
default implementation which calls ResetReading() (p. ??) and then calls GetNextFeature() (p. ??) nIndex
times is used. To determine if fast seeking is available on the current layer use the TestCapability() (p. ??)
method with a value of OLCFastSetNextByIndex.

This method is the same as the C function OGR_L_SetNextByIndex() (p. ??).

Parameters:

nlndex the index indicating how many steps into the result set to seek.

Returns:

OGRERR_NONE on success or an error code.

Reimplemented in OGRGenSQLResultsLayer (p.??).
References GetNextFeature(), and ResetReading().
Referenced by OGRGenSQLResultsLayer::SetNextByIndex().

13.53.2.29 void OGRLayer::SetSpatialFilter (OGRGeometry * poFilter) [virtual]

Set a new spatial filter. This method set the geometry to be used as a spatial filter when fetching features
via the GetNextFeature() (p. ??) method. Only features that geometrically intersect the filter geometry
will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who’s envelope
(as returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be
returned. This can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsi-
bility of the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the layer (as returned by
OGRLayer::GetSpatialRef() (p. ??)). In the future this may be generalized.

13.53 OGRLayer Class Reference 237

This method is the same as the C function OGR_L_SetSpatialFilter() (p. ??).

Parameters:

poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current
spatial filter should be cleared, but no new one instituted.

References ResetReading().

Referenced by OGRGenSQLResultsLayer::ResetReading(), and SetSpatialFilterRect().

13.53.2.30 void OGRLayer::SetSpatialFilterRect (double dfMinX, double dfMinY, double
dfMaxX, double dfMaxY) [virtual]

Set a new rectangular spatial filter. This method set rectangle to be used as a spatial filter when fetching
features via the GetNextFeature() (p.??) method. Only features that geometrically intersect the given
rectangle will be returned.

The x/y values should be in the same coordinate system as the layer as a whole (as returned by OGR-
Layer::GetSpatialRef() (p. ??)). Internally this method is normally implemented as creating a 5 vertex
closed rectangular polygon and passing it to OGRLayer::SetSpatialFilter() (p. ??). It exists as a conve-
nience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).
This method is the same as the C function OGR_L_SetSpatialFilterRect() (p. ??).

Parameters:

dfMinX the minimum X coordinate for the rectangular region.
dfMinY the minimum Y coordinate for the rectangular region.
dfMaxX the maximum X coordinate for the rectangular region.

dfMaxY the maximum Y coordinate for the rectangular region.

References OGRLineString::addPoint(), OGRPolygon::addRing(), and SetSpatialFilter().

13.53.2.31 void OGRLayer::SetStyleTable (OGRStyleTable * poStyleTable) [virtual]

Set layer style table. This method operate exactly as OGRLayer::SetStyleTableDirectly() (p. ??) except
that it does not assume ownership of the passed table.

This method is the same as the C function OGR_L_SetStyleTable().

Parameters:

poStyleTable pointer to style table to set

References OGRStyleTable::Clone().

13.53.2.32 void OGRLayer::SetStyleTableDirectly (OGRStyleTable * poStyleTable) [virtual]

Set layer style table. This method operate exactly as OGRLayer::SetStyleTable() (p.??) except that it
assumes ownership of the passed table.

This method is the same as the C function OGR_L_SetStyleTableDirectly().

238 Class Documentation

Parameters:

poStyleTable pointer to style table to set

13.53.2.33 OGRErr OGRLayer::SyncToDisk () [virtual]

Flush pending changes to disk. This call is intended to force the layer to flush any pending writes to disk,
and leave the disk file in a consistent state. It would not normally have any effect on read-only datasources.

Some layers do not implement this method, and will still return OGRERR_NONE. The default implemen-
tation just returns OGRERR_NONE. An error is only returned if an error occurs while attempting to flush
to disk.

In any event, you should always «close any opened datasource with OGRData-
Source::DestroyDataSource() (p. ??) that will ensure all data is correctly flushed.

This method is the same as the C function OGR_L_SyncToDisk() (p. ??).

Returns:

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

Referenced by OGRDataSource::SyncToDisk().

13.53.2.34 int OGRLayer::TestCapability (const char * pszCap) [pure virtual]

Test if this layer supported the named capability. The capability codes that can be tested are represented as
strings, but #defined constants exists to ensure correct spelling. Specific layer types may implement class
specific capabilities, but this can’t generally be discovered by the caller.

* OLCRandomRead / "RandomRead": TRUE if the GetFeature() (p. ??) method is implemented in
an optimized way for this layer, as opposed to the default implementation using ResetReading()
(p- ??) and GetNextFeature() (p. ??) to find the requested feature id.

* OLCSequentialWrite / "SequentialWrite": TRUE if the CreateFeature() (p. ??) method works for
this layer. Note this means that this particular layer is writable. The same OGRLayer (p. ??) class
may returned FALSE for other layer instances that are effectively read-only.

¢ OLCRandomWrite / "RandomWrite": TRUE if the SetFeature() (p. ??) method is operational on
this layer. Note this means that this particular layer is writable. The same OGRLayer (p. ??) class
may returned FALSE for other layer instances that are effectively read-only.

* OLCFastSpatialFilter / "FastSpatialFilter": TRUE if this layer implements spatial filtering effi-
ciently. Layers that effectively read all features, and test them with the OGRFeature (p. ??) in-
tersection methods should return FALSE. This can be used as a clue by the application whether it
should build and maintain its own spatial index for features in this layer.

* OLCFastFeatureCount / "FastFeatureCount": TRUE if this layer can return a feature count (via
GetFeatureCount() (p. ??)) efficiently ... ie. without counting the features. In some cases this will
return TRUE until a spatial filter is installed after which it will return FALSE.

* OLCFastGetExtent / "FastGetExtent": TRUE if this layer can return its data extent (via GetEx-
tent() (p.??)) efficiently ... ie. without scanning all the features. In some cases this will return
TRUE until a spatial filter is installed after which it will return FALSE.

13.53 OGRLayer Class Reference 239

* OLCFastSetNextByIndex / "FastSetNextBylndex": TRUE if this layer can perform the Set-
NextByIndex() (p. ??) call efficiently, otherwise FALSE.

* OLCCreateField / "CreateField": TRUE if this layer can create new fields on the current layer using
CreateField() (p. ??), otherwise FALSE.

* OLCDeleteField / "DeleteField": TRUE if this layer can delete existing fields on the current layer
using DeleteField() (p. ??), otherwise FALSE.

* OLCReorderFields / "ReorderFields": TRUE if this layer can reorder existing fields on the current
layer using ReorderField() (p. ??) or ReorderFields() (p. ??), otherwise FALSE.

e OLCAIlterFieldDefn / "AlterFieldDefn": TRUE if this layer can alter the definition of an existing
field on the current layer using AlterFieldDefn() (p. ??), otherwise FALSE.

* OLCDeleteFeature / "DeleteFeature": TRUE if the DeleteFeature() (p. ??) method is supported on
this layer, otherwise FALSE.

* OLCStringsAsUTF8 / "StringsAsUTF8": TRUE if values of OFTString fields are assured to be in
UTEF-8 format. If FALSE the encoding of fields is uncertain, though it might still be UTF-8.

¢ OLCTransactions / "Transactions": TRUE if the StartTransaction(), CommitTransaction() and Roll-
backTransaction() methods work in a meaningful way, otherwise FALSE.

* OLClIgnoreFields / "IgnoreFields": TRUE if fields, geometry and style will be omitted when fetch-
ing features as set by SetIgnoredFields() (p. ??) method.

This method is the same as the C function OGR_L_TestCapability() (p. ??).

Parameters:

pszCap the name of the capability to test.

Returns:

TRUE if the layer has the requested capability, or FALSE otherwise. OGRLayers will return FALSE
for any unrecognised capabilities.

Implemented in OGRGenSQLResultsLayer (p.??).
Referenced by OGRDataSource::CopyLayer(), and OGRGenSQLResultsLayer:: TestCapability().

The documentation for this class was generated from the following files:

¢ ogrsf_frmts.h
e ogrsf_frmts.dox
e ogrlayer.cpp

240

Class Documentation

13.54 OGRLayerAttrIndex Class Reference

Inheritance diagram for OGRLayerAttrIndex::

\ OGRL ayerAttrindex \

T

| OGRMILayerAttrindex |

The documentation for this class was generated from the following files:

 ogr_attrind.h
* ogr_attrind.cpp

13.55 OGRLinearRing Class Reference 241

13.55 OGRLinearRing Class Reference

#include <ogr_geometry.h>Inheritance diagram for OGRLinearRing::

| OGRGeometry |

T

| OGRCurve |

T

| OGRLineString |

T

| OGRLinearRing |

Public Member Functions

e virtual const char * getGeometryName () const

Fetch WKT name for geometry type.

¢ virtual OGRGeometry * clone () const

Make a copy of this object.

« virtual int isClockwise () const

Returns TRUE if the ring has clockwise winding (or less than 2 points).

« virtual void closeRings ()

Force rings to be closed.

* virtual double get_Area () const

Compute area of ring.

« virtual int WKkbSize () const

Returns size of related binary representation.

e virtual OGRErr importFromWkb (unsigned char x*, int=-1)

Assign geometry from well known binary data.

* virtual OGRErr exportToWkb (OGRwkbByteOrder, unsigned char *) const

Convert a geometry into well known binary format.

Friends

¢ class OGRPolygon

242 Class Documentation

13.55.1 Detailed Description

Concrete representation of a closed ring.

This class is functionally equivelent to an OGRLineString (p. ??), but has a separate identity to maintain
alignment with the OpenGIS simple feature data model. It exists to serve as a component of an OGRPoly-

gon (p. 2?).

The OGRLinearRing (p. ??) has no corresponding free standing well known binary representation, so
importFromWkb() (p. ??) and exportToWkb() (p. ??) will not actually work. There is a non-standard
GDAL WKT representation though.

Because OGRLinearRing (p. ??) is not a "proper" free standing simple features object, it cannot be di-
rectly used on a feature via SetGeometry(), and cannot genearally be used with GEOS for operations like
Intersects() (p.??). Instead the polygon should be used, or the OGRLinearRing (p. ??) should be con-
verted to an OGRLineString (p. ??) for such operations.

13.55.2 Member Function Documentation
13.55.2.1 OGRGeometry + OGRLinearRing::clone () const [virtual]

Make a copy of this object. This method relates to the SFCOM IGeometry::clone() method.
This method is the same as the C function OGR_G_Clone() (p. ??).

Returns:

a new object instance with the same geometry, and spatial reference system as the original.

Reimplemented from OGRLineString (p. ??).

References OGRGeometry::assignSpatialReference(), OGRGeometry::getSpatialReference(), and OGR-
LineString::setPoints().

13.55.2.2 void OGRLinearRing::closeRings () [virtuall]

Force rings to be closed. If this geometry, or any contained geometries has polygon rings that are not
closed, they will be closed by adding the starting point at the end.

Reimplemented from OGRGeometry (p.??).

References OGRLineString::addPoint(), OGRGeometry::getCoordinateDimension(), OGR-
LineString::getX(), OGRLineString::getY(), and OGRLineString::getZ().

13.55.2.3 OGRErr OGRLinearRing::exportToWkb (OGRwkbByteOrder eByteOrder, unsigned
char x pabyData) const [virtual]

Convert a geometry into well known binary format. This method relates to the SFCOM
IWks::ExportToWKB() method.

This method is the same as the C function OGR_G_ExportToWkb() (p. ??).

Parameters:

eByteOrder One of wkbXDR or wkbNDR indicating MSB or LSB byte order respectively.

13.55 OGRLinearRing Class Reference 243

pabyData a buffer into which the binary representation is written. This buffer must be at least OGR-
Geometry::WkbSize() (p. ??) byte in size.
Returns:

Currently OGRERR_NONE is always returned.

Reimplemented from OGRLineString (p.??).

13.55.2.4 double OGRLinearRing::get_Area () const [virtual]

Compute area of ring. The area is computed according to Green’s Theorem:

Area is "Sum(x(i)*(y(i+1) - y(i-1)))/2" for i = 0 to pointCount-1, assuming the last point is a duplicate of
the first.

Returns:

computed area.

Referenced by OGRPolygon::get_Area().

13.55.2.5 const char *+ OGRLinearRing::getGeometryName () const [virtual]

Fetch WKT name for geometry type. There is no SFCOM analog to this method.
This method is the same as the C function OGR_G_GetGeometryName() (p. ??).

Returns:
name used for this geometry type in well known text format. The returned pointer is to a static internal

string and should not be modified or freed.

Reimplemented from OGRLineString (p.??).

13.55.2.6 OGRErr OGRLinearRing::importFromWkb (unsigned char * pabyData, int nSize =
-1) [virtual]

Assign geometry from well known binary data. The object must have already been instantiated as the
correct derived type of geometry object to match the binaries type. This method is used by the OGRGe-
ometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKB() method.
This method is the same as the C function OGR_G_ImportFromWkb() (p. ??).

Parameters:
pabyData the binary input data.
nSize the size of pabyData in bytes, or zero if not known.
Returns:
OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Reimplemented from OGRLineString (p.??).

244 Class Documentation

13.55.2.7 int OGRLinearRing::isClockwise () const [virtual]
Returns TRUE if the ring has clockwise winding (or less than 2 points).

Returns:

TRUE if clockwise otherwise FALSE.

Referenced by OGRGeometryFactory::organizePolygons().

13.55.2.8 int OGRLinearRing::WkbSize () const [virtual]

Returns size of related binary representation. This method returns the exact number of bytes required
to hold the well known binary representation of this geometry object. Its computation may be slightly
expensive for complex geometries.

This method relates to the SFCOM IWks::WkbSize() method.
This method is the same as the C function OGR_G_WKkbSize() (p. ??).

Returns:

size of binary representation in bytes.

Reimplemented from OGRLineString (p.??).

The documentation for this class was generated from the following files:

* ogr_geometry.h
* ogrlinearring.cpp

13.56 OGRLineString Class Reference 245

13.56 OGRLineString Class Reference

#include <ogr_geometry.h>Inheritance diagram for OGRLineString::

| OGRGeometry |

T

| OGRCurve |

T

| OGRLineString |

T

| OGRLinearRing |

Public Member Functions

* OGRLineString ()

Create an empty line string.

e virtual int WKkbSize () const

Returns size of related binary representation.

¢ virtual OGRErr importFromWkb (unsigned char , int=-1)

Assign geometry from well known binary data.

* virtual OGRErr exportToWkb (OGRwkbByteOrder, unsigned char *) const

Convert a geometry into well known binary format.

« virtual OGRErr importFromWkt (char xx)

Assign geometry from well known text data.

* virtual OGRErr exportToWkt (char *xppszDstText) const

Convert a geometry into well known text format.

* virtual int getDimension () const

Get the dimension of this object.

¢ virtual OGRGeometry * clone () const

Make a copy of this object.

e virtual void empty ()

Clear geometry information. This restores the geometry to it’s initial state after construction, and before
assignment of actual geometry.

* virtual void getEnvelope (OGREnvelope s«psEnvelope) const

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

« virtual void getEnvelope (OGREnvelope3D xpsEnvelope) const

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

246 Class Documentation

* virtual OGRBoolean IsEmpty () const
Returns TRUE (non-zero) if the object has no points.

« virtual double get_Length () const

Returns the length of the curve.

e virtual void StartPoint (OGRPoint *) const

Return the curve start point.

e virtual void EndPoint (OGRPoint %) const

Return the curve end point.

« virtual void Value (double, OGRPoint) const

Fetch point at given distance along curve.

* int getNumPoints () const

Fetch vertex count.

* void getPoint (int, OGRPoint x) const

Fetch a point in line string.

¢ double getX (int i) const

Get X at vertex.

* double getY (int i) const

Get Y at vertex.

* double getZ (int i) const

Get Z at vertex.

e virtual void setCoordinateDimension (int nDimension)

Set the coordinate dimension.

¢ void setNumPoints (int)

Set number of points in geometry.

¢ void setPoint (int, OGRPoint x)

Set the location of a vertex in line string.

¢ void setPoint (int, double, double, double)

Set the location of a vertex in line string.

¢ void setPoints (int, OGRRawPoint %, double *=NULL)

Assign all points in a line string.

* void setPoints (int, double *padfX, double xpadfY, double xpadfZ=NULL)

Assign all points in a line string.

¢ void addPoint (OGRPoint *)

13.56 OGRLineString Class Reference 247

Add a point to a line string.

¢ void addPoint (double, double, double)

Add a point to a line string.

¢ void getPoints (OGRRawPoint *, double +=NULL) const

Returns all points of line string.

* void getPoints (void *pabyX, int nXStride, void *pabyY, int nYStride, void xpabyZ=NULL, int
nZStride=0) const

Returns all points of line string.

* void addSubLineString (const OGRLineString *, int nStartVertex=0, int nEndVertex=-1)

Add a segment of another linestring to this one.

¢ virtual OGRwkbGeometryType getGeometryType () const
Fetch geometry type.

e virtual const char * getGeometryName () const

Fetch WKT name for geometry type.

¢ virtual OGRErr transform (OGRCoordinateTransformation xpoCT)

Apply arbitrary coordinate transformation to geometry.

« virtual void flattenTo2D ()

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

* virtual void segmentize (double dfMaxLength)

Modify the geometry such it has no segment longer then the given distance.

¢ virtual void swapXY ()

Swap x and y coordinates.

13.56.1 Detailed Description

Concrete representation of a multi-vertex line.

13.56.2 Member Function Documentation
13.56.2.1 void OGRLineString::addPoint (double x, double y, double z)

Add a point to a line string. The vertex count of the line string is increased by one, and assigned from the
passed location value.

There is no SFCOM analog to this method.

Parameters:

x the X coordinate to assign to the new point.

248 Class Documentation

y the Y coordinate to assign to the new point.

z the Z coordinate to assign to the new point (defaults to zero).

References setPoint().

13.56.2.2 void OGRLineString::addPoint (OGRPoint *« poPoint)
Add a point to a line string. The vertex count of the line string is increased by one, and assigned from the
passed location value.

There is no SFCOM analog to this method.

Parameters:

poPoint the point to assign to the new vertex.

References OGRGeometry::getCoordinateDimension(), OGRPoint::getX(), OGRPoint::getY(), OGR-
Point::getZ(), and setPoint().

Referenced by OGRLinearRing::closeRings(), = OGRBuildPolygonFromEdges(), and OGR-
Layer::SetSpatialFilterRect().

13.56.2.3 void OGRLineString::addSubLineString (const OGRLineString « poOtherLine, int
nStartVertex = 0, int nEndVertex = -1)

Add a segment of another linestring to this one. Adds the request range of vertices to the end of this line
string in an efficient manner. If the nStartVertex is larger than the nEndVertex then the vertices will be
reversed as they are copied.

Parameters:

poOtherLine the other OGRLineString (p. 2?).
nStartVertex the first vertex to copy, defaults to O to start with the first vertex in the other linestring.

nEndVertex the last vertex to copy, defaults to -1 indicating the last vertex of the other line string.

References getNumPoints(), and setNumPoints().

Referenced by OGRGeometryFactory::forceToMultiLineString().

13.56.2.4 OGRGeometry *+ OGRLineString::clone () const [virtual]

Make a copy of this object. This method relates to the SFCOM IGeometry::clone() method.
This method is the same as the C function OGR_G_Clone() (p. ??).

Returns:

a new object instance with the same geometry, and spatial reference system as the original.

Implements OGRGeometry (p.??).
Reimplemented in OGRLinearRing (p.??).

References OGRGeometry::assignSpatialReference(), OGRGeometry::getCoordinateDimension(), OGR-
Geometry::getSpatialReference(), OGRLineString(), setCoordinateDimension(), and setPoints().

13.56 OGRLineString Class Reference 249

13.56.2.5 void OGRLineString::empty () [virtual]

Clear geometry information. This restores the geometry to it’s initial state after construction, and before
assignment of actual geometry. This method relates to the SFCOM IGeometry::Empty() method.

This method is the same as the C function OGR_G_Empty() (p. 2?).

Implements OGRGeometry (p.??).

References setNumPoints().

Referenced by importFromWkt().

13.56.2.6 void OGRLineString::EndPoint (OGRPoint * poPoint) const [virtuall]
Return the curve end point. This method relates to the SF COM ICurve::get_EndPoint() method.

Parameters:

poPoint the point to be assigned the end location.

Implements OGRCurve (p.??).
References getPoint().

Referenced by Value().

13.56.2.7 OGRErr OGRLineString::exportToWkb (OGRwkbByteOrder eByteOrder, unsigned
char * pabyData) const [virtuall]

Convert a geometry into well known binary format. This method relates to the SFCOM
IWks::ExportToWKB() method.
This method is the same as the C function OGR_G_ExportToWkb() (p. ??).

Parameters:

eByteOrder One of wkbXDR or wkbNDR indicating MSB or LSB byte order respectively.
pabyData a buffer into which the binary representation is written. This buffer must be at least OGR-

Geometry::WkbSize() (p. ??) byte in size.
Returns:

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p.??).
Reimplemented in OGRLinearRing (p.??).
References OGRGeometry::getCoordinateDimension(), and getGeometryType().

13.56.2.8 OGRErr OGRLineString::exportToWkt (char *x ppszDstText) const [virtual]

Convert a geometry into well known text format. This method relates to the SFCOM
IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

250 Class Documentation

Parameters:

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer.

Returns:

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p.??).
References OGRGeometry::getCoordinateDimension(), and getGeometryName().
Referenced by OGRPolygon::exportToWkt().

13.56.2.9 void OGRLineString::flattenTo2D () [virtual]

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0. This method is the same
as the C function OGR_G_FlattenTo2D() (p. ??).

Implements OGRGeometry (p.??).
13.56.2.10 double OGRLineString::get_Length () const [virtual]
Returns the length of the curve. This method relates to the SFCOM ICurve::get_Length() method.

Returns:

the length of the curve, zero if the curve hasn’t been initialized.

Implements OGRCurve (p.??).

13.56.2.11 int OGRLineString::getDimension () const [virtual]

Get the dimension of this object. This method corresponds to the SFCOM IGeometry::GetDimension()
method. It indicates the dimension of the object, but does not indicate the dimension of the underlying
space (as indicated by OGRGeometry::getCoordinateDimension() (p. ??)).

This method is the same as the C function OGR_G_GetDimension() (p. 2?).

Returns:

0 for points, 1 for lines and 2 for surfaces.

Implements OGRGeometry (p.??).

13.56.2.12 void OGRLineString::getEnvelope (OGREnvelope3D « psEnvelope) const
[virtual]

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.
This method is the same as the C function OGR_G_GetEnvelope3D() (p. 2?).

Parameters:

psEnvelope the structure in which to place the results.

13.56 OGRLineString Class Reference 251

Since:

OGR 1.9.0

Implements OGRGeometry (p.??).

References getEnvelope().

13.56.2.13 void OGRLineString::getEnvelope (OGREnvelope « psEnvelope) const [virtual]

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure. This
method is the same as the C function OGR_G_GetEnvelope() (p. ??).

Parameters:

psEnvelope the structure in which to place the results.

Implements OGRGeometry (p.??).
Referenced by OGRPolygon::getEnvelope(), and getEnvelope().

13.56.2.14 const char * OGRLineString::getGeometryName () const [virtual]

Fetch WKT name for geometry type. There is no SFCOM analog to this method.
This method is the same as the C function OGR_G_GetGeometryName() (p. 2?).

Returns:

name used for this geometry type in well known text format. The returned pointer is to a static internal
string and should not be modified or freed.

Implements OGRGeometry (p.??).
Reimplemented in OGRLinearRing (p. ??).
Referenced by exportToWkt(), and importFromWkt().

13.56.2.15 OGRwkbGeometryType OGRLineString::getGeometryType () const [virtual]
Fetch geometry type. Note that the geometry type may include the 2.5D flag. To get a 2D flattened version

of the geometry type apply the wkbFlatten() macro to the return result.
This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Returns:

the geometry type code.

Implements OGRGeometry (p.??).
References OGRGeometry::getCoordinateDimension(), wkbLineString, and wkbLineString25D.
Referenced by exportToWkb().

252 Class Documentation

13.56.2.16 int OGRLineString::getNumPoints () const [inline]

Fetch vertex count. Returns the number of vertices in the line string.

Returns:

vertex count.

Referenced by addSubLineString(), OGRGeometry::dumpReadable(), OGRGeometryFac-
tory::forceToMultiLineString(), OGR_G_GetPoint(), OGR_G_GetPointCount(), OGR_G_GetPoints(),
OGR_G_GetX(), OGR_G_GetY(), OGR_G_GetZ(), OGRBuildPolygonFromEdges(), and OGRGeome-
tryFactory::organizePolygons().

13.56.2.17 void OGRLineString::getPoint (int i, OGRPoint x poPoint) const

Fetch a point in line string. This method relates to the SFCOM ILineString::get Point() method.

Parameters:
i the vertex to fetch, from 0 to getNumPoints() (p. 2?)-1.

poPoint a point to initialize with the fetched point.

References OGRGeometry::getCoordinateDimension(), OGRPoint::setX(), OGRPoint::setY(), and OGR-
Point::setZ().

Referenced by EndPoint(), OGRGeometryFactory::organizePolygons(), and StartPoint().

13.56.2.18 void OGRLineString::getPoints (void * pabyX, int nXStride, void x pabyY, int
nYStride, void * pabyZ = NULL, int nZStride = 0) const

Returns all points of line string. This method copies all points into user arrays. The user provides the stride
between 2 consecutives elements of the array.

On some CPU architectures, care must be taken so that the arrays are properly aligned.

There is no SFCOM analog to this method.

Parameters:
pabyX a buffer of at least (sizeof(double) * nXStride * nPointCount) bytes, may be NULL.
nXStride the number of bytes between 2 elements of pabyX.
pabyY a buffer of at least (sizeof(double) * nYStride * nPointCount) bytes, may be NULL.
nYStride the number of bytes between 2 elements of pabyY.
pabyZ a buffer of at last size (sizeof(double) * nZStride * nPointCount) bytes, may be NULL.
nZStride the number of bytes between 2 elements of pabyZ.

Since:

OGR 1.9.0

References getPoints().

13.56 OGRLineString Class Reference 253

13.56.2.19 void OGRLineString::getPoints (OGRRawPoint * paoPointsOut, double x padfZ =
NULL) const

Returns all points of line string. This method copies all points into user list. This list must be at least
sizeof(OGRRawPoint) x* OGRGeometry::getNumPoints() byte in size. It also copies all Z coordinates.

There is no SFCOM analog to this method.

Parameters:

paoPointsOut a buffer into which the points is written.
padfZ the Z values that go with the points (optional, may be NULL).

Referenced by getPoints(), and OGR_G_GetPoints().

13.56.2.20 double OGRLineString::getX (int iVertex) const [inline]

Get X at vertex. Returns the X value at the indicated vertex. If iVertex is out of range a crash may occur,
no internal range checking is performed.

Parameters:

iVertex the vertex to return, between 0 and getNumPoints() (p. ??)-1.

Returns:

X value.

Referenced by OGRLinearRing::closeRings(), OGR_G_GetPoint(), OGR_G_GetX(), and OGRBuildPoly-
gonFromEdges().

13.56.2.21 double OGRLineString::getY (int iVertex) const [inline]

Get Y at vertex. Returns the Y value at the indicated vertex. If iVertex is out of range a crash may occur,
no internal range checking is performed.

Parameters:

iVertex the vertex to return, between 0 and getNumPoints() (p. ??)-1.

Returns:

X value.

Referenced by OGRLinearRing::closeRings(), OGR_G_GetPoint(), OGR_G_GetY(), and OGRBuildPoly-
gonFromEdges().

13.56.2.22 double OGRLineString::getZ (int iVertex) const

Get Z at vertex. Returns the Z (elevation) value at the indicated vertex. If no Z value is available, 0.0 is
returned. If iVertex is out of range a crash may occur, no internal range checking is performed.

Parameters:

iVertex the vertex to return, between 0 and getNumPoints() (p. ??)-1.

254 Class Documentation

Returns:

Z value.

Referenced by OGRLinearRing::closeRings(), OGR_G_GetPoint(), OGR_G_GetZ(), and OGRBuildPoly-
gonFromEdges().

13.56.2.23 OGRErr OGRLineString::importFromWKkb (unsigned char x pabyData, int nSize =
-1) [virtual]

Assign geometry from well known binary data. The object must have already been instantiated as the
correct derived type of geometry object to match the binaries type. This method is used by the OGRGe-
ometryFactory (p. 2?) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKB() method.
This method is the same as the C function OGR_G_ImportFromWkb() (p. ??).

Parameters:

pabyData the binary input data.

nSize the size of pabyData in bytes, or zero if not known.

Returns:

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p.??).
Reimplemented in OGRLinearRing (p.??).

References setNumPoints(), and wkbLineString.

13.56.2.24 OGRErr OGRLineString::importFromWkt (char xx ppszInput) [virtuall]

Assign geometry from well known text data. The object must have already been instantiated as the correct
derived type of geometry object to match the text type. This method is used by the OGRGeometryFactory
(p- ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKT() method.
This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

Parameters:
ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.
Returns:

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p.??).

References empty(), and getGeometryName().

13.56 OGRLineString Class Reference 255

13.56.2.25 OGRBoolean OGRLineString::IsEmpty () const [virtual]

Returns TRUE (non-zero) if the object has no points. Normally this returns FALSE except between when
an object is instantiated and points have been assigned.

This method relates to the SFCOM IGeometry::IsEmpty() method.

Returns:

TRUE if object is empty, otherwise FALSE.

Implements OGRGeometry (p.??).

13.56.2.26 void OGRLineString::segmentize (double dfMaxLength) [virtuall]
Modify the geometry such it has no segment longer then the given distance. Interpolated points will have
Z and M values (if needed) set to 0. Distance computation is performed in 2d only

This function is the same as the C function OGR_G_Segmentize() (p. ??)

Parameters:

dfMaxLength the maximum distance between 2 points after segmentization

Reimplemented from OGRGeometry (p.??).

References OGRGeometry::getCoordinateDimension().

13.56.2.27 void OGRLineString::setCoordinateDimension (int nNewDimension) [virtual]

Set the coordinate dimension. This method sets the explicit coordinate dimension. Setting the coordinate
dimension of a geometry to 2 should zero out any existing Z values. Setting the dimension of a geometry
collection will not necessarily affect the children geometries.

Parameters:

nNewDimension New coordinate dimension value, either 2 or 3.

Reimplemented from OGRGeometry (p.??).
Referenced by clone(), and OGRPolygon::exportToWkt().

13.56.2.28 void OGRLineString::setNumPoints (int nNewPointCount)

Set number of points in geometry. This method primary exists to preset the number of points in a linestring
geometry before setPoint() (p. ??) is used to assign them to avoid reallocating the array larger with each
call to addPoint() (p. ??).

This method has no SFCOM analog.

Parameters:

nNewPointCount the new number of points for geometry.

References OGRGeometry::getCoordinateDimension().
Referenced by addSubLineString(), empty(), importFromWkb(), setPoint(), and setPoints().

256 Class Documentation

13.56.2.29 void OGRLineString::setPoint (int iPoint, double xIn, double yIn, double zIn)
Set the location of a vertex in line string. If iPoint is larger than the number of necessary the number of
existing points in the line string, the point count will be increased to accomodate the request.

There is no SFCOM analog to this method.

Parameters:
iPoint the index of the vertex to assign (zero based).
xIn input X coordinate to assign.
yIn input Y coordinate to assign.

zIn input Z coordinate to assign (defaults to zero).

References OGRGeometry::getCoordinateDimension(), and setNumPoints().

13.56.2.30 void OGRLineString::setPoint (int iPoint, OGRPoint * poPoint)
Set the location of a vertex in line string. If iPoint is larger than the number of necessary the number of

existing points in the line string, the point count will be increased to accomodate the request.

There is no SFCOM analog to this method.

Parameters:
iPoint the index of the vertex to assign (zero based).

poPoint the value to assign to the vertex.

References OGRPoint::getX(), OGRPoint::getY(), and OGRPoint::getZ().
Referenced by addPoint(), and OGRGeometryFactory::approximate ArcAngles().

13.56.2.31 void OGRLineString::setPoints (int nPointsIn, double * padfX, double x padfY, double
* padfZ = NULL)

Assign all points in a line string. This method clear any existing points assigned to this line string, and

assigns a whole new set.

There is no SFCOM analog to this method.

Parameters:
nPointsIn number of points being passed in padfX and padfY.
padfX list of X coordinates of points being assigned.
padfY list of Y coordinates of points being assigned.
padfZ list of Z coordinates of points being assigned (defaults to NULL for 2D objects).

References setNumPoints().

13.56 OGRLineString Class Reference 257

13.56.2.32 void OGRLineString::setPoints (int nPointsIn, OGRRawPoint x paoPointsIn, double x
padfZ = NULL)

Assign all points in a line string. This method clears any existing points assigned to this line string, and
assigns a whole new set. It is the most efficient way of assigning the value of a line string.

There is no SFCOM analog to this method.

Parameters:

nPointsIn number of points being passed in paoPointsIn
paoPointsIn list of points being assigned.
padfZ the Z values that go with the points (optional, may be NULL).

References OGRGeometry::getCoordinateDimension(), and setNumPoints().

Referenced by clone(), OGRLinearRing::clone(), OGRPolygon::importFromWkt(), OGRMultiPoly-
gon::importFromWkt(), OGRMultiLineString::importFromWkt(), and transform().

13.56.2.33 void OGRLineString::StartPoint (OGRPoint x poPoint) const [virtual]

Return the curve start point. This method relates to the SF COM ICurve::get_StartPoint() method.

Parameters:

poPoint the point to be assigned the start location.

Implements OGRCurve (p.??).
References getPoint().

Referenced by Value().

13.56.2.34 void OGRLineString::swapXY () [virtual]

Swap x and y coordinates.

Since:

OGR 1.8.0

Reimplemented from OGRGeometry (p.??).

13.56.2.35 OGRErr OGRLineString::transform (OGRCoordinateTransformation * poCT)
[virtual]

Apply arbitrary coordinate transformation to geometry. This method will transform the coordinates of a
geometry from their current spatial reference system to a new target spatial reference system. Normally
this means reprojecting the vectors, but it could include datum shifts, and changes of units.

Note that this method does not require that the geometry already have a spatial reference system. It will
be assumed that they can be treated as having the source spatial reference system of the OGRCoordi-
nateTransformation (p. ??) object, and the actual SRS of the geometry will be ignored. On successful
completion the output OGRSpatialReference (p. ??) of the OGRCoordinateTransformation (p. ??) will
be assigned to the geometry.

This method is the same as the C function OGR_G_Transform() (p. ??).

258 Class Documentation

Parameters:

poCT the transformation to apply.

Returns:

OGRERR_NONE on success or an error code.

Implements OGRGeometry (p.??).

References OGRGeometry::assignSpatialReference(), OGRCoordinateTransformation::GetTargetCS(),
setPoints(), and OGRCoordinateTransformation::TransformEx().

Referenced by OGRPolygon::transform().

13.56.2.36 void OGRLineString::Value (double dfDistance, OGRPoint *« poPoint) const
[virtual]

Fetch point at given distance along curve. This method relates to the SF COM ICurve::get_Value() method.

Parameters:

dfDistance distance along the curve at which to sample position. This distance should be between
zero and get_Length() (p. ??) for this curve.

poPoint the point to be assigned the curve position.

Implements OGRCurve (p.??).

References EndPoint(), OGRGeometry::getCoordinateDimension(), =~ OGRPoint::setX(), OGR-
Point::setY (), OGRPoint::setZ(), and StartPoint().

13.56.2.37 int OGRLineString::WkbSize () const [virtual]

Returns size of related binary representation. This method returns the exact number of bytes required
to hold the well known binary representation of this geometry object. Its computation may be slightly
expensive for complex geometries.

This method relates to the SFCOM IWks::WkbSize() method.
This method is the same as the C function OGR_G_WKkbSize() (p. ??).

Returns:

size of binary representation in bytes.

Implements OGRGeometry (p.??).
Reimplemented in OGRLinearRing (p. ??).
References OGRGeometry::getCoordinateDimension().

The documentation for this class was generated from the following files:

* ogr_geometry.h
* ogrlinestring.cpp

13.57 OGRMIAttrIndex Class Reference

259

13.57 OGRMIAttrIndex Class Reference

Inheritance diagram for OGRMIAttrIndex::

\ OGRA(trIndex \

\ OGRMIALttrindex \

The documentation for this class was generated from the following file:

* ogr_miattrind.cpp

260 Class Documentation

13.58 OGRMILayerAttrIndex Class Reference

Inheritance diagram for OGRMILayerAttrIndex::

\ OGRL ayerAttrindex \

T

| OGRMILayerAttrindex |

The documentation for this class was generated from the following file:

* ogr_miattrind.cpp

13.59 OGRMultiLineString Class Reference 261

13.59 OGRMultiLineString Class Reference

#include <ogr_geometry.h>Inheritance diagram for OGRMultiLineString::

\ OGRGeometry \

\ OGRGeometryCollection \

T

| OGRMultiLineString |

Public Member Functions

* virtual const char * getGeometryName () const

Fetch WKT name for geometry type.

¢ virtual OGRwkbGeometryType getGeometryType () const
Fetch geometry type.

¢ virtual OGRGeometry * clone () const

Make a copy of this object.

¢ virtual OGRErr importFromWkt (char xx)

Assign geometry from well known text data.

¢ virtual OGRErr exportToWKkt (char *x) const

Convert a geometry into well known text format.

« virtual OGRErr addGeometryDirectly (OGRGeometry)

Add a geometry directly to the container.

13.59.1 Detailed Description

A collection of OGRLineStrings.

13.59.2 Member Function Documentation

13.59.2.1 OGRErr OGRMultiLineString::addGeometryDirectly (OGRGeometry *x poNewGeom)
[virtual]

Add a geometry directly to the container. Some subclasses of OGRGeometryCollection (p. ??) restrict
the types of geometry that can be added, and may return an error. Ownership of the passed geometry is
taken by the container rather than cloning as addGeometry() (p. ??) does.

This method is the same as the C function OGR_G_AddGeometryDirectly() (p. 2?).
There is no SFCOM analog to this method.

262 Class Documentation

Parameters:

poNewGeom geometry to add to the container.

Returns:

OGRERR_NONE if successful, or OGRERR_UNSUPPORTED_GEOMETRY_TYPE if the geome-
try type is illegal for the type of geometry container.

Reimplemented from OGRGeometryCollection (p.??).
References OGRGeometry::getGeometryType(), wkbLineString, and wkbLineString25D.
Referenced by OGRGeometryFactory::forceToMultiLineString(), and importFromWkt().

13.59.2.2 OGRGeometry *+ OGRMultiLineString::clone () const [virtual]

Make a copy of this object. This method relates to the SFCOM IGeometry::clone() method.
This method is the same as the C function OGR_G_Clone() (p. ??).

Returns:

a new object instance with the same geometry, and spatial reference system as the original.

Reimplemented from OGRGeometryCollection (p.??).

References OGRGeometryCollection::addGeometry(), OGRGeometry::assignSpatialReference(), OGR-
GeometryCollection::getGeometryRef(), OGRGeometryCollection::getNumGeometries(), and OGRGe-
ometry::getSpatialReference().

13.59.2.3 OGRErr OGRMultiLineString::exportToWkt (char xx ppszDstText) const [virtual]

Convert a geometry into well known text format. This method relates to the SFCOM
IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters:

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer.

Returns:

Currently OGRERR_NONE is always returned.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRGeometry::exportToWkt(), OGRGeometryCollection::getGeometryRef(), and OGRGe-
ometryCollection::getNumGeometries().

13.59.2.4 const char * OGRMultiLineString::getGeometryName () const [virtual]

Fetch WKT name for geometry type. There is no SFCOM analog to this method.
This method is the same as the C function OGR_G_GetGeometryName() (p. ??).

13.59 OGRMultiLineString Class Reference 263

Returns:

name used for this geometry type in well known text format. The returned pointer is to a static internal
string and should not be modified or freed.

Reimplemented from OGRGeometryCollection (p.??).
Referenced by importFromWkt().

13.59.2.5 OGRwkbGeometryType OGRMultiLineString::getGeometryType () const
[virtual]

Fetch geometry type. Note that the geometry type may include the 2.5D flag. To get a 2D flattened version
of the geometry type apply the wkbFlatten() macro to the return result.
This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Returns:

the geometry type code.

Reimplemented from OGRGeometryCollection (p. ??).

References =~ OGRGeometry::getCoordinateDimension(), =~ wkbMultiLineString, = and wkbMulti-
LineString25D.

13.59.2.6 OGRErr OGRMultiLineString::importFromWkt (char *x ppszInput) [virtual]

Assign geometry from well known text data. The object must have already been instantiated as the correct
derived type of geometry object to match the text type. This method is used by the OGRGeometryFactory
(p- 7?) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKT() method.
This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

Parameters:
ppszlnput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.
Returns:

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Reimplemented from OGRGeometryCollection (p. ??).

References addGeometryDirectly(), OGRGeometryCollection::empty(), getGeometryName(), and OGR-
LineString::setPoints().

The documentation for this class was generated from the following files:

* ogr_geometry.h
 ogrmultilinestring.cpp

264 Class Documentation

13.60 OGRMultiPoint Class Reference

#include <ogr_geometry.h>Inheritance diagram for OGRMultiPoint::

\ OGRGeometry \

\ OGRGeometryCollection \

T

\ OGRMultiPoint \

Public Member Functions

* virtual const char * getGeometryName () const

Fetch WKT name for geometry type.

¢ virtual OGRwkbGeometryType getGeometryType () const
Fetch geometry type.

¢ virtual OGRGeometry * clone () const

Make a copy of this object.

¢ virtual OGRErr importFromWkt (char xx)

Assign geometry from well known text data.

¢ virtual OGRErr exportToWKkt (char *x) const

Convert a geometry into well known text format.

« virtual OGRErr addGeometryDirectly (OGRGeometry)

Add a geometry directly to the container.

13.60.1 Detailed Description

A collection of OGRPoints.

13.60.2 Member Function Documentation

13.60.2.1 OGRErr OGRMultiPoint::addGeometryDirectly (OGRGeometry x poNewGeom)
[virtual]

Add a geometry directly to the container. Some subclasses of OGRGeometryCollection (p. ??) restrict
the types of geometry that can be added, and may return an error. Ownership of the passed geometry is
taken by the container rather than cloning as addGeometry() (p. ??) does.

This method is the same as the C function OGR_G_AddGeometryDirectly() (p. 2?).
There is no SFCOM analog to this method.

13.60 OGRMultiPoint Class Reference 265

Parameters:

poNewGeom geometry to add to the container.

Returns:

OGRERR_NONE if successful, or OGRERR_UNSUPPORTED_GEOMETRY_TYPE if the geome-
try type is illegal for the type of geometry container.

Reimplemented from OGRGeometryCollection (p.??).
References OGRGeometry::getGeometryType(), wkbPoint, and wkbPoint25D.
Referenced by OGRGeometryFactory::forceToMultiPoint(), and importFromWkt().

13.60.2.2 OGRGeometry *+ OGRMultiPoint::clone () const [virtual]

Make a copy of this object. This method relates to the SFCOM IGeometry::clone() method.
This method is the same as the C function OGR_G_Clone() (p. ??).

Returns:

a new object instance with the same geometry, and spatial reference system as the original.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRGeometryCollection::addGeometry(), OGRGeometry::assignSpatialReference(), OGR-
GeometryCollection::getGeometryRef(), OGRGeometryCollection::getNumGeometries(), and OGRGe-
ometry::getSpatialReference().

13.60.2.3 OGRErr OGRMultiPoint::exportToWkt (char xx ppszDstText) const [virtual]
Convert a geometry into well known text format. This method relates to the SFCOM
IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters:

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer.

Returns:

Currently OGRERR_NONE is always returned.

Reimplemented from OGRGeometryCollection (p.??).

References OGRGeometry::getCoordinateDimension(), getGeometryName(), OGRGeometryCollec-
tion::getGeometryRef(), OGRGeometryCollection::getNumGeometries(), OGRPoint::getX(), OGR-
Point::getY (), OGRPoint::getZ(), OGRPoint::IsEmpty(), and OGRGeometryCollection::IsEmpty().

13.60.2.4 const char + OGRMultiPoint::getGeometryName () const [virtual]

Fetch WKT name for geometry type. There is no SFCOM analog to this method.
This method is the same as the C function OGR_G_GetGeometryName() (p. ??).

266 Class Documentation

Returns:

name used for this geometry type in well known text format. The returned pointer is to a static internal
string and should not be modified or freed.

Reimplemented from OGRGeometryCollection (p.??).
Referenced by exportToWkt(), and importFromWkt().

13.60.2.5 OGRwkbGeometryType OGRMultiPoint::getGeometryType () const [virtuall]
Fetch geometry type. Note that the geometry type may include the 2.5D flag. To get a 2D flattened version

of the geometry type apply the wkbFlatten() macro to the return result.
This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Returns:

the geometry type code.

Reimplemented from OGRGeometryCollection (p. ??).
References OGRGeometry::getCoordinateDimension(), wkbMultiPoint, and wkbMultiPoint25D.

13.60.2.6 OGRErr OGRMultiPoint::importFromWkt (char xx ppszInput) [virtual]

Assign geometry from well known text data. The object must have already been instantiated as the correct
derived type of geometry object to match the text type. This method is used by the OGRGeometryFactory
(p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks:: ImportFromWKT() method.
This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

Parameters:
ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.
Returns:

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Reimplemented from OGRGeometryCollection (p.??).
References addGeometryDirectly(), OGRGeometryCollection::empty(), and getGeometryName().

The documentation for this class was generated from the following files:

* ogr_geometry.h
* ogrmultipoint.cpp

13.61 OGRMultiPolygon Class Reference 267

13.61 OGRMultiPolygon Class Reference

#include <ogr_geometry.h>Inheritance diagram for OGRMultiPolygon::

‘ OGRGeometry ‘

T

\ OGRGeometryCollection \

T

‘ OGRMultiPolygon ‘

Public Member Functions

e virtual const char * getGeometryName () const

Fetch WKT name for geometry type.

¢ virtual OGRwkbGeometryType getGeometryType () const
Fetch geometry type.

¢ virtual OGRGeometry * clone () const

Make a copy of this object.

¢ virtual OGRErr importFromWkt (char xx)

Assign geometry from well known text data.

¢ virtual OGRErr exportToWKkt (char *x) const

Convert a geometry into well known text format.

« virtual OGRErr addGeometryDirectly (OGRGeometry)

Add a geometry directly to the container.

« virtual double get_Area () const

13.61.1 Detailed Description

A collection of non-overlapping OGRPolygons.

Note that the IMultiSurface class hasn’t been modelled, nor have any of it’s methods.

13.61.2 Member Function Documentation

13.61.2.1 OGRErr OGRMultiPolygon::addGeometryDirectly (OGRGeometry x poNewGeom)
[virtual]

Add a geometry directly to the container. Some subclasses of OGRGeometryCollection (p. ??) restrict
the types of geometry that can be added, and may return an error. Ownership of the passed geometry is
taken by the container rather than cloning as addGeometry() (p. ??) does.

268 Class Documentation

This method is the same as the C function OGR_G_AddGeometryDirectly() (p. 2?).
There is no SFCOM analog to this method.

Parameters:

poNewGeom geometry to add to the container.

Returns:

OGRERR_NONE if successful, or OGRERR_UNSUPPORTED_GEOMETRY_TYPE if the geome-
try type is illegal for the type of geometry container.

Reimplemented from OGRGeometryCollection (p.?2?).
References OGRGeometry::getGeometryType(), wkbPolygon, and wkbPolygon25D.
Referenced by OGRGeometryFactory::forceToMultiPolygon(), and importFromWkt().

13.61.2.2 OGRGeometry + OGRMultiPolygon::clone () const [virtual]

Make a copy of this object. This method relates to the SFCOM IGeometry::clone() method.
This method is the same as the C function OGR_G_Clone() (p. ??).

Returns:

a new object instance with the same geometry, and spatial reference system as the original.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRGeometryCollection::addGeometry(), OGRGeometry::assignSpatialReference(), OGR-
GeometryCollection::getGeometryRef(), OGRGeometryCollection::getNumGeometries(), and OGRGe-
ometry::getSpatialReference().

13.61.2.3 OGRErr OGRMultiPolygon::exportToWkt (char *x ppszDstText) const [virtual]
Convert a geometry into well known text format. This method relates to the SFCOM
IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters:

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer.

Returns:

Currently OGRERR_NONE is always returned.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRGeometry::exportToWkt(), OGRGeometryCollection::getGeometryRef(), and OGRGe-
ometryCollection::getNumGeometries().

13.61 OGRMultiPolygon Class Reference 269

13.61.2.4 double OGRMultiPolygon::get_Area () const [virtual]

Compute area of multipolygon.

The area is computed as the sum of the areas of all polygon members in this collection.

Returns:

computed area.

Reimplemented from OGRGeometryCollection (p.?2?).

References OGRPolygon::get_Area(), OGRGeometryCollection::getGeometryRef(), and OGRGeome-
tryCollection::getNumGeometries().

13.61.2.5 const char * OGRMultiPolygon::getGeometryName () const [virtual]

Fetch WKT name for geometry type. There is no SFCOM analog to this method.
This method is the same as the C function OGR_G_GetGeometryName() (p. 2?).

Returns:

name used for this geometry type in well known text format. The returned pointer is to a static internal
string and should not be modified or freed.

Reimplemented from OGRGeometryCollection (p.??).
Referenced by importFromWkt().

13.61.2.6 OGRwkbGeometryType OGRMultiPolygon::getGeometryType () const [virtual]
Fetch geometry type. Note that the geometry type may include the 2.5D flag. To get a 2D flattened version

of the geometry type apply the wkbFlatten() macro to the return result.
This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Returns:

the geometry type code.

Reimplemented from OGRGeometryCollection (p. ??).
References OGRGeometry::getCoordinateDimension(), wkbMultiPolygon, and wkbMultiPolygon25D.

13.61.2.7 OGRErr OGRMultiPolygon::importFromWkt (char *x ppszInput) [virtual]

Assign geometry from well known text data. The object must have already been instantiated as the correct
derived type of geometry object to match the text type. This method is used by the OGRGeometryFactory
(p- ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKT() method.
This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

270 Class Documentation

Parameters:
ppszlnput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.
Returns:

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Reimplemented from OGRGeometryCollection (p.??).

References addGeometryDirectly(), OGRPolygon::addRingDirectly(), OGRGeometryCollec-
tion::empty(), getGeometryName(), and OGRLineString::setPoints().

The documentation for this class was generated from the following files:

* ogr_geometry.h
* ogrmultipolygon.cpp

13.62 OGRPoint Class Reference 271

13.62 OGRPoint Class Reference

#include <ogr_geometry.h>Inheritance diagram for OGRPoint::

OGRGeometry

OGRPoint

Public Member Functions

OGRPoint ()
Create a (0,0) point.

virtual int WkbSize () const

Returns size of related binary representation.

virtual OGRErr importFromWKkb (unsigned char x*, int=-1)

Assign geometry from well known binary data.

virtual OGRErr exportToWkb (OGRwkbByteOrder, unsigned char) const

Convert a geometry into well known binary format.

virtual OGRErr importFromWKkt (char s:x)

Assign geometry from well known text data.

virtual OGRErr exportToWkt (char #xppszDstText) const

Convert a geometry into well known text format.

virtual int getDimension () const

Get the dimension of this object.

virtual OGRGeometry x* clone () const

Make a copy of this object.

virtual void empty ()

Clear geometry information. This restores the geometry to it’s initial state after construction, and before
assignment of actual geometry.

virtual void getEnvelope (OGREnvelope xpsEnvelope) const

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

virtual void getEnvelope (OGREnvelope3D xpsEnvelope) const

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

virtual OGRBoolean ISsEmpty () const

Returns TRUE (non-zero) if the object has no points.

272 Class Documentation

* double getX () const
Fetch X coordinate.

* double getY () const

Fetch Y coordinate.

* double getZ () const

Fetch Z coordinate.

e virtual void setCoordinateDimension (int nDimension)

Set the coordinate dimension.

¢ void setX (double xIn)

Assign point X coordinate.

* void setY (double yIn)

Assign point Y coordinate.

* void setZ (double zIn)

Assign point Z coordinate. Calling this method will force the geometry coordinate dimension to 3D
(wkbPoint|wkbZ).

* virtual const char * getGeometryName () const

Fetch WKT name for geometry type.

¢ virtual OGRwkbGeometryType getGeometryType () const
Fetch geometry type.

« virtual OGRErr transform (OGRCoordinateTransformation xpoCT)

Apply arbitrary coordinate transformation to geometry.

* virtual void flattenTo2D ()

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

« virtual void swapXY ()

Swap x and y coordinates.

13.62.1 Detailed Description

Point class.

Implements SFCOM IPoint methods.

13.62.2 Member Function Documentation
13.62.2.1 OGRGeometry x OGRPoint::clone () const [virtuall]

Make a copy of this object. This method relates to the SFCOM IGeometry::clone() method.
This method is the same as the C function OGR_G_Clone() (p. ??).

13.62 OGRPoint Class Reference 273

Returns:

a new object instance with the same geometry, and spatial reference system as the original.

Implements OGRGeometry (p.??).

References OGRGeometry::assignSpatialReference(), OGRGeometry::getSpatialReference(), OGR-
Point(), and setCoordinateDimension().

13.62.2.2 void OGRPoint::empty () [virtual]

Clear geometry information. This restores the geometry to it’s initial state after construction, and before
assignment of actual geometry. This method relates to the SFCOM IGeometry::Empty() method.

This method is the same as the C function OGR_G_Empty() (p. 2?).

Implements OGRGeometry (p.??).

Referenced by importFromWkt(), and OGRPoint().

13.62.2.3 OGRErr OGRPoint::exportToWkb (OGRwkbByteOrder eByteOrder, unsigned char x
pabyData) const [virtuall]

Convert a geometry into well known binary format. This method relates to the SFCOM
IWks::ExportToWKB() method.
This method is the same as the C function OGR_G_ExportToWkb() (p. 2?).

Parameters:

eByteOrder One of wkbXDR or wkbNDR indicating MSB or LSB byte order respectively.

pabyData a buffer into which the binary representation is written. This buffer must be at least OGR-
Geometry::WkbSize() (p. ??) byte in size.

Returns:

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p.??).
References getGeometryType().

13.62.2.4 OGRErr OGRPoint::exportToWKkt (char xx ppszDstText) const [virtuall]

Convert a geometry into well known text format. This method relates to the SFCOM
IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters:

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer.

Returns:

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p.??).

274 Class Documentation

13.62.2.5 void OGRPoint::flattenTo2D () [virtual]

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0. This method is the same
as the C function OGR_G_FlattenTo2D() (p. ??).

Implements OGRGeometry (p.??).

13.62.2.6 int OGRPoint::getDimension () const [virtuall]

Get the dimension of this object. This method corresponds to the SFCOM IGeometry::GetDimension()
method. It indicates the dimension of the object, but does not indicate the dimension of the underlying
space (as indicated by OGRGeometry::getCoordinateDimension() (p. ??)).

This method is the same as the C function OGR_G_GetDimension() (p. 2?).

Returns:

0 for points, 1 for lines and 2 for surfaces.

Implements OGRGeometry (p.??).

13.62.2.7 void OGRPoint::getEnvelope (OGREnvelope3D x psEnvelope) const [virtual]

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.
This method is the same as the C function OGR_G_GetEnvelope3D() (p. ??).

Parameters:

psEnvelope the structure in which to place the results.

Since:

OGR 1.9.0

Implements OGRGeometry (p.??).
References getX(), getY(), and getZ().

13.62.2.8 void OGRPoint::getEnvelope (OGREnvelope * psEnvelope) const [virtual]

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure. This
method is the same as the C function OGR_G_GetEnvelope() (p. ??).

Parameters:

psEnvelope the structure in which to place the results.

Implements OGRGeometry (p.??).
References getX(), and getY().

13.62 OGRPoint Class Reference 275

13.62.2.9 const char *+ OGRPoint::getGeometryName () const [virtual]

Fetch WKT name for geometry type. There is no SFCOM analog to this method.
This method is the same as the C function OGR_G_GetGeometryName() (p. ??).

Returns:

name used for this geometry type in well known text format. The returned pointer is to a static internal
string and should not be modified or freed.

Implements OGRGeometry (p.??).

13.62.2.10 OGRwkbGeometryType OGRPoint::getGeometryType () const [virtual]

Fetch geometry type. Note that the geometry type may include the 2.5D flag. To get a 2D flattened version
of the geometry type apply the wkbFlatten() macro to the return result.

This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Returns:

the geometry type code.

Implements OGRGeometry (p.??).
References wkbPoint, and wkbPoint25D.
Referenced by exportToWkb(), and OGR_G_Centroid().

13.62.2.11 double OGRPoint::getX () const [inline]

Fetch X coordinate. Relates to the SFCOM IPoint::get_X() method.

Returns:

the X coordinate of this point.

Referenced by OGRLineString::addPoint(), OGRGeometry::Centroid(), OGRMultiPoint::exportToWkt(),
OGRCurve::get_IsClosed(), getEnvelope(), OGRPolygon::PointOnSurface(), and OGR-
LineString::setPoint().

13.62.2.12 double OGRPoint::getY () const [inline]

Fetch Y coordinate. Relates to the SFCOM IPoint::get_Y() method.

Returns:

the Y coordinate of this point.

Referenced by OGRLineString::addPoint(), OGRGeometry::Centroid(), OGRMultiPoint::exportToWkt(),
OGRCurve::get_IsClosed(), getEnvelope(), OGRPolygon::PointOnSurface(), and OGR-
LineString::setPoint().

276 Class Documentation

13.62.2.13 double OGRPoint::getZ () const [inline]

Fetch Z coordinate. Relates to the SFCOM IPoint::get_Z() method.
Returns:
the Z coordinate of this point, or zero if it is a 2D point.

Referenced by OGRLineString::addPoint(), OGRMultiPoint::exportToWkt(), getEnvelope(), and OGR-
LineString::setPoint().

13.62.2.14 OGRErr OGRPoint::importFromWKkb (unsigned char x pabyData, int nSize = -1)
[virtual]

Assign geometry from well known binary data. The object must have already been instantiated as the
correct derived type of geometry object to match the binaries type. This method is used by the OGRGe-
ometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKB() method.
This method is the same as the C function OGR_G_ImportFromWkb() (p. ??).

Parameters:
pabyData the binary input data.
nSize the size of pabyData in bytes, or zero if not known.
Returns:
OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.
Implements OGRGeometry (p.??).

References wkbPoint.

13.62.2.15 OGRErr OGRPoint::importFromWkt (char *x ppszInput) [virtual]

Assign geometry from well known text data. The object must have already been instantiated as the correct
derived type of geometry object to match the text type. This method is used by the OGRGeometryFactory
(p- 7?) class, but not normally called by application code.

This method relates to the SFCOM IWks:: ImportFromWKT() method.
This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

Parameters:

ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.

Returns:
OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.
Implements OGRGeometry (p.??).

References empty().

13.62 OGRPoint Class Reference 277

13.62.2.16 OGRBoolean OGRPoint::IsEmpty () const [virtual]

Returns TRUE (non-zero) if the object has no points. Normally this returns FALSE except between when
an object is instantiated and points have been assigned.

This method relates to the SFCOM IGeometry::IsEmpty() method.

Returns:

TRUE if object is empty, otherwise FALSE.

Implements OGRGeometry (p.??).

Referenced by OGRMultiPoint::exportToWkt().

13.62.2.17 void OGRPoint::setCoordinateDimension (int nNewDimension) [virtual]

Set the coordinate dimension. This method sets the explicit coordinate dimension. Setting the coordinate

dimension of a geometry to 2 should zero out any existing Z values. Setting the dimension of a geometry
collection will not necessarily affect the children geometries.

Parameters:

nNewDimension New coordinate dimension value, either 2 or 3.

Reimplemented from OGRGeometry (p. ??).
Referenced by clone().

13.62.2.18 void OGRPoint::setX (double xIn) [inline]

Assign point X coordinate. There is no corresponding SFCOM method.

Referenced by OGRGeometry::Centroid(), OGRLineString::getPoint(), OGRPolygon::PointOnSurface(),
and OGRLineString::Value().

13.62.2.19 void OGRPoint::setY (double yIn) [inline]

Assign point Y coordinate. There is no corresponding SFCOM method.

Referenced by OGRGeometry::Centroid(), OGRLineString::getPoint(), OGRPolygon::PointOnSurface(),
and OGRLineString::Value().

13.62.2.20 void OGRPoint::setZ (double zIn) [inline]

Assign point Z coordinate. Calling this method will force the geometry coordinate dimension to 3D
(wkbPoint|wkbZ). There is no corresponding SFCOM method.

Referenced by OGRLineString::getPoint(), and OGRLineString::Value().

13.62.2.21 void OGRPoint::swapXY () [virtual]

Swap x and y coordinates.

278 Class Documentation

Since:

OGR 1.8.0

Reimplemented from OGRGeometry (p.??).

13.62.2.22 OGRErr OGRPoint::transform (OGRCoordinateTransformation x poCT)
[virtual]

Apply arbitrary coordinate transformation to geometry. This method will transform the coordinates of a
geometry from their current spatial reference system to a new target spatial reference system. Normally
this means reprojecting the vectors, but it could include datum shifts, and changes of units.

Note that this method does not require that the geometry already have a spatial reference system. It will
be assumed that they can be treated as having the source spatial reference system of the OGRCoordi-
nateTransformation (p. ??) object, and the actual SRS of the geometry will be ignored. On successful
completion the output OGRSpatialReference (p. ??) of the OGRCoordinateTransformation (p. ??) will
be assigned to the geometry.

This method is the same as the C function OGR_G_Transform() (p. ??).

Parameters:

poCT the transformation to apply.

Returns:

OGRERR_NONE on success or an error code.

Implements OGRGeometry (p.??).

References OGRGeometry::assignSpatialReference(), OGRCoordinateTransformation::GetTargetCS(),
and OGRCoordinateTransformation::Transform().

13.62.2.23 int OGRPoint::WkbSize () const [virtuall]

Returns size of related binary representation. This method returns the exact number of bytes required
to hold the well known binary representation of this geometry object. Its computation may be slightly
expensive for complex geometries.

This method relates to the SFCOM IWks::WkbSize() method.
This method is the same as the C function OGR_G_WKkbSize() (p. 2?).

Returns:

size of binary representation in bytes.

Implements OGRGeometry (p.??).

The documentation for this class was generated from the following files:

* ogr_geometry.h
* ogrpoint.cpp

13.63 OGRPolygon Class Reference 279

13.63 OGRPolygon Class Reference

#include <ogr_geometry.h>Inheritance diagram for OGRPolygon::

OGRGeometry

OGRSurface

OGRPolygon

Public Member Functions

OGRPolygon ()
Create an empty polygon.

* virtual const char * getGeometryName () const

Fetch WKT name for geometry type.

¢ virtual OGRwkbGeometryType getGeometryType () const
Fetch geometry type.

¢ virtual OGRGeometry * clone () const

Make a copy of this object.

* virtual void empty ()

Clear geometry information. This restores the geometry to it’s initial state after construction, and before
assignment of actual geometry.

¢ virtual OGRErr transform (OGRCoordinateTransformation xpoCT)

Apply arbitrary coordinate transformation to geometry.

* virtual void flattenTo2D ()

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

¢ virtual OGRBoolean IsEmpty () const

Returns TRUE (non-zero) if the object has no points.

* virtual void segmentize (double dfMaxLength)

Modify the geometry such it has no segment longer then the given distance.

* virtual double get_Area () const

Compute area of polygon.

* virtual int PointOnSurface (OGRPoint «poPoint) const
This method relates to the SFCOM ISurface::get_PointOnSurface() method.

e virtual int WkbSize () const

280

Class Documentation

Returns size of related binary representation.

virtual OGRErr importFromWKkb (unsigned char x, int=-1)

Assign geometry from well known binary data.

virtual OGRErr exportToWkb (OGRwkbByteOrder, unsigned char) const

Convert a geometry into well known binary format.

virtual OGRErr importFromWKkt (char s:x)

Assign geometry from well known text data.

virtual OGRErr exportToWKkt (char *xppszDstText) const

Convert a geometry into well known text format.

virtual int getDimension () const

Get the dimension of this object.

virtual void getEnvelope (OGREnvelope xpsEnvelope) const

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

virtual void getEnvelope (OGREnvelope3D xpsEnvelope) const

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

virtual void setCoordinateDimension (int nDimension)

Set the coordinate dimension.

void addRing (OGRLinearRing x)
Add a ring to a polygon.

void addRingDirectly (OGRLinearRing)
Add a ring to a polygon.

OGRLinearRing * getExteriorRing ()

Fetch reference to external polygon ring.

int getNumlInteriorRings () const

Fetch the number of internal rings.

OGRLinearRing * getInteriorRing (int)

Fetch reference to indicated internal ring.

virtual void closeRings ()

Force rings to be closed.

virtual void swapXY ()

Swap x and y coordinates.

13.63 OGRPolygon Class Reference 281

13.63.1 Detailed Description

Concrete class representing polygons.

Note that the OpenGIS simple features polygons consist of one outer ring, and zero or more inner rings. A
polygon cannot represent disconnected regions (such as multiple islands in a political body). The OGR-
MultiPolygon (p. ??) must be used for this.

13.63.2 Member Function Documentation
13.63.2.1 void OGRPolygon::addRing (OGRLinearRing « poNewRing)

Add a ring to a polygon. If the polygon has no external ring (it is empty) this will be used as the external
ring, otherwise it is used as an internal ring. The passed OGRLinearRing (p. ??) remains the responsibility
of the caller (an internal copy is made).

This method has no SFCOM analog.

Parameters:

poNewRing ring to be added to the polygon.

References OGRGeometry::getCoordinateDimension().

Referenced by clone(), OGRGeometryFactory::forceToPolygon(), OGRGeometryFac-
tory::organizePolygons(), and OGRLayer::SetSpatialFilterRect().

13.63.2.2 void OGRPolygon::addRingDirectly (OGRLinearRing « poNewRing)

Add a ring to a polygon. If the polygon has no external ring (it is empty) this will be used as the external
ring, otherwise it is used as an internal ring. Ownership of the passed ring is assumed by the OGRPolygon
(p. 7?), but otherwise this method operates the same as OGRPolygon::AddRing().

This method has no SFCOM analog.

Parameters:

poNewRing ring to be added to the polygon.

References OGRGeometry::getCoordinateDimension().
Referenced by OGRMultiPolygon::importFromWkt(), and OGRBuildPolygonFromEdges().

13.63.2.3 OGRGeometry *+ OGRPolygon::clone () const [virtuall]

Make a copy of this object. This method relates to the SFCOM IGeometry::clone() method.
This method is the same as the C function OGR_G_Clone() (p. ??).

Returns:

a new object instance with the same geometry, and spatial reference system as the original.

Implements OGRGeometry (p.??).

References addRing(), OGRGeometry::assignSpatialReference(), and OGRGeome-
try::getSpatialReference().

282 Class Documentation

13.63.2.4 void OGRPolygon::closeRings () [virtual]

Force rings to be closed. If this geometry, or any contained geometries has polygon rings that are not
closed, they will be closed by adding the starting point at the end.

Reimplemented from OGRGeometry (p.??).

13.63.2.5 void OGRPolygon::empty () [virtual]

Clear geometry information. This restores the geometry to it’s initial state after construction, and before
assignment of actual geometry. This method relates to the SFCOM IGeometry::Empty() method.

This method is the same as the C function OGR_G_Empty() (p. 2?).

Implements OGRGeometry (p.??).

Referenced by importFromWkt().

13.63.2.6 OGRErr OGRPolygon::exportToWkb (OGRwkbByteOrder eByteOrder, unsigned char
x pabyData) const [virtuall]

Convert a geometry into well known binary format. This method relates to the SFCOM

IWks::ExportToWKB() method.
This method is the same as the C function OGR_G_ExportToWkb() (p. ??).

Parameters:
eByteOrder One of wkbXDR or wkbNDR indicating MSB or LSB byte order respectively.

pabyData a buffer into which the binary representation is written. This buffer must be at least OGR-
Geometry::WkbSize() (p. ??) byte in size.

Returns:

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p.??).
References OGRGeometry::getCoordinateDimension(), and getGeometryType().

13.63.2.7 OGRErr OGRPolygon::exportToWkt (char xx ppszDstText) const [virtuall]

Convert a geometry into well known text format. This method relates to the SFCOM
IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters:

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer.

Returns:

Currently OGRERR_NONE is always returned.

13.63 OGRPolygon Class Reference 283

Implements OGRGeometry (p.??).

References OGRLineString::exportToWkt(), OGRGeometry::getCoordinateDimension(), getExterior-
Ring(), IsEmpty(), and OGRLineString::setCoordinateDimension().

Referenced by OGRGeometryFactory::organizePolygons().

13.63.2.8 void OGRPolygon::flattenTo2D () [virtual]

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0. This method is the same
as the C function OGR_G_FlattenTo2D() (p. ??).

Implements OGRGeometry (p.??).

13.63.2.9 double OGRPolygon::get_Area () const [virtual]

Compute area of polygon. The area is computed as the area of the outer ring less the area of all internal
rings.
Returns:

computed area.

Implements OGRSurface (p.??).

References OGRLinearRing::get Area(), getExteriorRing(), getlnteriorRing(), and getNumlInterior-
Rings().

Referenced by OGRMultiPolygon::get_Area(), and OGRGeometryFactory::organizePolygons().
13.63.2.10 int OGRPolygon::getDimension () const [virtual]
Get the dimension of this object. This method corresponds to the SFCOM IGeometry::GetDimension()

method. It indicates the dimension of the object, but does not indicate the dimension of the underlying
space (as indicated by OGRGeometry::getCoordinateDimension() (p. 2?)).

This method is the same as the C function OGR_G_GetDimension() (p. 2?).

Returns:

0 for points, 1 for lines and 2 for surfaces.

Implements OGRGeometry (p.??).

13.63.2.11 void OGRPolygon::getEnvelope (OGREnvelope3D * psEnvelope) const [virtual]

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.
This method is the same as the C function OGR_G_GetEnvelope3D() (p. 2?).

Parameters:

psEnvelope the structure in which to place the results.

Since:

OGR 1.9.0

284 Class Documentation

Implements OGRGeometry (p.??).
References OGRLineString::getEnvelope(), and IsEmpty().

13.63.2.12 void OGRPolygon::getEnvelope (OGREnvelope * psEnvelope) const [virtual]

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure. This
method is the same as the C function OGR_G_GetEnvelope() (p. ??).

Parameters:

psEnvelope the structure in which to place the results.

Implements OGRGeometry (p.??).
References OGRLineString::getEnvelope(), and IsEmpty().

13.63.2.13 OGRLinearRing « OGRPolygon::getExteriorRing ()

Fetch reference to external polygon ring. Note that the returned ring pointer is to an internal data object of
the OGRPolygon (p. ??). It should not be modified or deleted by the application, and the pointer is only
valid till the polygon is next modified. Use the OGRGeometry::clone() (p. ??) method to make a separate
copy within the application.

Relates to the SFCOM IPolygon::get_ExteriorRing() method.

Returns:

pointer to external ring. May be NULL if the OGRPolygon (p. ??) is empty.

Referenced by OGRGeometry::dumpReadable(), exportToWkt(), OGRGeometryFac-
tory::forceToMultiLineString(), OGRGeometryFactory::forceToPolygon(), get_Area(), and OGRGe-
ometryFactory::organizePolygons().

13.63.2.14 const char * OGRPolygon::getGeometryName () const [virtual]

Fetch WKT name for geometry type. There is no SFCOM analog to this method.
This method is the same as the C function OGR_G_GetGeometryName() (p. 2?).

Returns:

name used for this geometry type in well known text format. The returned pointer is to a static internal
string and should not be modified or freed.

Implements OGRGeometry (p.??).

13.63.2.15 OGRwkbGeometryType OGRPolygon::getGeometryType () const [virtual]

Fetch geometry type. Note that the geometry type may include the 2.5D flag. To get a 2D flattened version
of the geometry type apply the wkbFlatten() macro to the return result.

This method is the same as the C function OGR_G_GetGeometryType() (p. 2?).

13.63 OGRPolygon Class Reference 285

Returns:

the geometry type code.

Implements OGRGeometry (p.??).
References OGRGeometry::getCoordinateDimension(), wkbPolygon, and wkbPolygon25D.
Referenced by exportToWkb().

13.63.2.16 OGRLinearRing x« OGRPolygon::getInteriorRing (int iRing)

Fetch reference to indicated internal ring. Note that the returned ring pointer is to an internal data object of
the OGRPolygon (p. ??). It should not be modified or deleted by the application, and the pointer is only
valid till the polygon is next modified. Use the OGRGeometry::clone() (p. ??) method to make a separate
copy within the application.

Relates to the SFCOM IPolygon::get_InternalRing() method.

Parameters:

iRing internal ring index from O to getNumInternalRings() - 1.

Returns:

pointer to external ring. May be NULL if the OGRPolygon (p. ??) is empty.

Referenced by OGRGeometry::dumpReadable(), OGRGeometryFactory::forceToMultiLineString(),
OGRGeometryFactory::forceToPolygon(), and get_Area().

13.63.2.17 int OGRPolygon::getNumlInteriorRings () const
Fetch the number of internal rings. Relates to the SFCOM IPolygon::get_ NumlInteriorRings() method.

Returns:

count of internal rings, zero or more.

Referenced by OGRGeometry::dumpReadable(), OGRGeometryFactory::forceToMultiLineString(),
OGRGeometryFactory::forceToPolygon(), and get_Area().

13.63.2.18 OGRErr OGRPolygon::importFromWkb (unsigned char x pabyData, int nSize = -1)
[virtual]

Assign geometry from well known binary data. The object must have already been instantiated as the
correct derived type of geometry object to match the binaries type. This method is used by the OGRGe-
ometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks:: ImportFromWKB() method.
This method is the same as the C function OGR_G_ImportFromWkb() (p. ??).

Parameters:

pabyData the binary input data.

nSize the size of pabyData in bytes, or zero if not known.

286 Class Documentation

Returns:

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p.??).
References VSIMalloc2(), and wkbPolygon.

13.63.2.19 OGRErr OGRPolygon::importFromWkt (char xx ppszInput) [virtuall]

Assign geometry from well known text data. The object must have already been instantiated as the correct
derived type of geometry object to match the text type. This method is used by the OGRGeometryFactory
(p- ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKT() method.
This method is the same as the C function OGR_G_ImportFromWkt() (p. 2?).

Parameters:
ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.
Returns:

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_-
UNSUPPORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p.??).
References empty(), and OGRLineString::setPoints().

13.63.2.20 OGRBoolean OGRPolygon::IsEmpty () const [virtual]

Returns TRUE (non-zero) if the object has no points. Normally this returns FALSE except between when
an object is instantiated and points have been assigned.

This method relates to the SFCOM IGeometry::IsEmpty() method.

Returns:

TRUE if object is empty, otherwise FALSE.

Implements OGRGeometry (p.??).
Referenced by exportToWkt(), and getEnvelope().

13.63.2.21 int OGRPolygon::PointOnSurface (OGRPoint * poPoint) const [virtual]

This method relates to the SFCOM ISurface::get_PointOnSurface() method. NOTE: Only implemented
when GEOS included in build.

Parameters:

poPoint point to be set with an internal point.

13.63 OGRPolygon Class Reference 287

Returns:

OGRERR_NONE if it succeeds or OGRERR_FAILURE otherwise.

Implements OGRSurface (p.??).

References OGRGeometry::getGeometryType(), OGRPoint::getX(), = OGRPoint::getY(), OGR-
Point::setX(), OGRPoint::setY(), and wkbPoint.

13.63.2.22 void OGRPolygon::segmentize (double dfMaxLength) [virtual]

Modify the geometry such it has no segment longer then the given distance. Interpolated points will have
Z and M values (if needed) set to 0. Distance computation is performed in 2d only

This function is the same as the C function OGR_G_Segmentize() (p. ??)

Parameters:

dfMaxLength the maximum distance between 2 points after segmentization

Reimplemented from OGRGeometry (p.??).

13.63.2.23 void OGRPolygon::setCoordinateDimension (int nNewDimension) [virtual]

Set the coordinate dimension. This method sets the explicit coordinate dimension. Setting the coordinate
dimension of a geometry to 2 should zero out any existing Z values. Setting the dimension of a geometry
collection will not necessarily affect the children geometries.

Parameters:

nNewDimension New coordinate dimension value, either 2 or 3.

Reimplemented from OGRGeometry (p.??).

13.63.2.24 void OGRPolygon::swapXY () [virtual]
Swap x and y coordinates.

Since:

OGR 1.8.0

Reimplemented from OGRGeometry (p.??).

13.63.2.25 OGRErr OGRPolygon::transform (OGRCoordinateTransformation x poCT)
[virtual]

Apply arbitrary coordinate transformation to geometry. This method will transform the coordinates of a
geometry from their current spatial reference system to a new target spatial reference system. Normally
this means reprojecting the vectors, but it could include datum shifts, and changes of units.

Note that this method does not require that the geometry already have a spatial reference system. It will
be assumed that they can be treated as having the source spatial reference system of the OGRCoordi-
nateTransformation (p. ??) object, and the actual SRS of the geometry will be ignored. On successful

288 Class Documentation

completion the output OGRSpatialReference (p. ??) of the OGRCoordinateTransformation (p. ??) will
be assigned to the geometry.

This method is the same as the C function OGR_G_Transform() (p. ??).

Parameters:

poCT the transformation to apply.

Returns:

OGRERR_NONE on success or an error code.

Implements OGRGeometry (p.??).

References OGRGeometry::assignSpatialReference(), OGRCoordinateTransformation::GetTargetCS(),
and OGRLineString::transform().

13.63.2.26 int OGRPolygon::WkbSize () const [virtual]

Returns size of related binary representation. This method returns the exact number of bytes required
to hold the well known binary representation of this geometry object. Its computation may be slightly
expensive for complex geometries.

This method relates to the SFCOM IWks::WkbSize() method.
This method is the same as the C function OGR_G_WKkbSize() (p. ??).

Returns:

size of binary representation in bytes.

Implements OGRGeometry (p.??).
References OGRGeometry::getCoordinateDimension().

The documentation for this class was generated from the following files:

* ogr_geometry.h
* ogrpolygon.cpp

13.64 OGRProj4CT Class Reference 289

13.64 OGRProj4CT Class Reference

Inheritance diagram for OGRProj4CT::

‘ OGRCoordinateTransformation ‘

T

\ OGRProj4CT \

Public Member Functions

« virtual OGRSpatialReference x GetSourceCS ()

« virtual OGRSpatialReference « GetTargetCS ()

* virtual int Transform (int nCount, double *x, double xy, double xz=NULL)

e virtual int TransformEx (int nCount, double *x, double xy, double *z=NULL, int
xpanSuccess=NULL)

13.64.1 Member Function Documentation
13.64.1.1 OGRSpatialReference * OGRProj4CT::GetSourceCS () [virtual]

Fetch internal source coordinate system.

Implements OGRCoordinateTransformation (p. ??).

13.64.1.2 OGRSpatialReference x OGRProj4CT::GetTargetCS () [virtuall]

Fetch internal target coordinate system.

Implements OGRCoordinateTransformation (p.??).

13.64.1.3 int OGRProj4CT::Transform (int nCount, double * x, double xy, double % z = NULL)
[virtual]

Transform points from source to destination space.

This method is the same as the C function OCTTransform().

The method TransformEx() (p. ??) allows extended success information to be captured indicating which

points failed to transform.

Parameters:

nCount number of points to transform.
x array of nCount X vertices, modified in place.
y array of nCount Y vertices, modified in place.

z array of nCount Z vertices, modified in place.

Returns:

TRUE on success, or FALSE if some or all points fail to transform.

290 Class Documentation

Implements OGRCoordinateTransformation (p.??).

References TransformEx().

13.64.1.4 int OGRProj4CT::TransformEx (int nCount, double x x, double x y, double * z = NULL,
int « pabSuccess = NULL) [virtual]
Transform points from source to destination space.

This method is the same as the C function OCTTransformEx().

Parameters:

nCount number of points to transform.

x array of nCount X vertices, modified in place.
y array of nCount Y vertices, modified in place.
z array of nCount Z vertices, modified in place.

pabSuccess array of per-point flags set to TRUE if that point transforms, or FALSE if it does not.

Returns:

TRUE if some or all points transform successfully, or FALSE if if none transform.

Implements OGRCoordinateTransformation (p.??).
Referenced by Transform().

The documentation for this class was generated from the following file:

* ogrct.cpp

13.65 OGRProj4Datum Struct Reference 291

13.65 OGRProj4Datum Struct Reference

The documentation for this struct was generated from the following file:

e ogr_srs_proj4.cpp

292 Class Documentation

13.66 OGRProj4PM Struct Reference

The documentation for this struct was generated from the following file:

e ogr_srs_proj4.cpp

13.67 OGRRawPoint Class Reference

293

13.67 OGRRawPoint Class Reference

#include <ogr_geometry.h>

13.67.1 Detailed Description

Simple container for a position.

The documentation for this class was generated from the following file:

* ogr_geometry.h

294 Class Documentation

13.68 OGRSFDriver Class Reference

#include <ogrsf_frmts.h>

Public Member Functions

e virtual const char * GetName ()=0

Fetch name of driver (file format). This name should be relatively short (10-40 characters), and should
reflect the underlying file format. For instance "ESRI Shapefile".

« virtual OGRDataSource + Open (const char *pszName, int bUpdate=FALSE)=0

Attempt to open file with this driver.

« virtual int TestCapability (const char *)=0
Test if capability is available.

* virtual OGRDataSource * CreateDataSource (const char xpszName, char *x=NULL)

This method attempts to create a new data source based on the passed driver.

* virtual OGRErr DeleteDataSource (const char «xpszName)

Delete a datasource.

e virtual OGRDataSource * CopyDataSource (OGRDataSource xpoSrcDS, const char
xpszNewName, char s«*papszOptions=NULL)

This method creates a new datasource by copying all the layers from the source datasource.

13.68.1 Detailed Description

Represents an operational format driver.

One OGRSFDriver (p.??) derived class will normally exist for each file format registered for use, re-
gardless of whether a file has or will be opened. The list of available drivers is normally managed by the
OGRSFDriverRegistrar (p. 2?).

13.68.2 Member Function Documentation

13.68.2.1 OGRDataSource x OGRSFDriver::CopyDataSource (OGRDataSource « poSrcDS,
const char * pszNewName, char xx papszOptions = NULL) [virtual]

This method creates a new datasource by copying all the layers from the source datasource. It is important
to call OGRDataSource::DestroyDataSource() (p. ??) when the datasource is no longer used to ensure
that all data has been properly flushed to disk.

This method is the same as the C function OGR_Dr_CopyDataSource() (p. ??).

Parameters:

poSrcDS source datasource

pszNewName the name for the new data source. UTF-8 encoded.

13.68 OGRSFDriver Class Reference 295

papszOptions a StringList of name=value options. Options are driver specific, and driver information
can be found at the following url: http://www.gdal.org/ogr/ogr_formats.html

Returns:

NULL is returned on failure, or a new OGRDataSource (p. ??) handle on success.

References OGRDataSource::CopyLayer(), CreateDataSource(), OGRDataSource::GetDriver(), OGR-
DataSource::GetLayer(), OGRDataSource::GetLayerCount(), OGRLayer::GetLayerDefn(), OGRFeature-
Defn::GetName(), GetName(), OGRDataSource::SetDriver(), and TestCapability().

13.68.2.2 OGRDataSource x OGRSFDriver::CreateDataSource (const char * pszName, char xx
papszOptions = NULL) [virtual]

This method attempts to create a new data source based on the passed driver. The papszOptions argument
can be used to control driver specific creation options. These options are normally documented in the
format specific documentation.

It is important to call OGRDataSource::DestroyDataSource() (p. ??) when the datasource is no longer
used to ensure that all data has been properly flushed to disk.

This method is the same as the C function OGR_Dr_CreateDataSource() (p. 2?).

Note:

This method does NOT attach driver instance to the returned data source, so caller should expect
that OGRDataSource::GetDriver() (p. ??) will return NULL pointer. In order to attach driver to the
returned data source, it is required to use C function OGR_Dr_CreateDataSource. This behavior is
related to fix of issue reported in Ticket #1233.

Parameters:

pszName the name for the new data source. UTF-8 encoded.

papszOptions a StringList of name=value options. Options are driver specific, and driver information
can be found at the following url: http://www.gdal.org/ogr/ogr_formats.html

Returns:

NULL is returned on failure, or a new OGRDataSource (p. ??) on success.

Referenced by CopyDataSource(), and OGR_Dr_CreateDataSource().

13.68.2.3 OGRErr OGRSFDriver::DeleteDataSource (const char x pszDataSource) [virtual]
Delete a datasource. Delete (from the disk, in the database, ...) the named datasource. Normally it would
be safest if the datasource was not open at the time.

Whether this is a supported operation on this driver case be tested using TestCapability() (p. ??) on ODr-
CDeleteDataSource.

This method is the same as the C function OGR_Dr_DeleteDataSource() (p. ??).

Parameters:

pszDataSource the name of the datasource to delete.

296 Class Documentation

Returns:

OGRERR_NONE on success, and OGRERR_UNSUPPORTED_OPERATION if this is not supported
by this driver.

13.68.2.4 const char x OGRSFDriver::GetName () [pure virtual]

Fetch name of driver (file format). This name should be relatively short (10-40 characters), and should
reflect the underlying file format. For instance "ESRI Shapefile". This method is the same as the C function
OGR_Dr_GetName() (p.??).

Returns:

driver name. This is an internal string and should not be modified or freed.

Referenced by CopyDataSource(), OGRDataSource::ExecuteSQL(), OGRSFDriverRegistrar::Open(), and
OGRSFDriverRegistrar::RegisterDriver().

13.68.2.5 OGRDataSource x* OGRSFDriver::Open (const char x pszName, int bUpdate = FALSE)
[pure virtual]

Attempt to open file with this driver. This method is what OGRSFDriverRegistrar (p. ??) uses to imple-
ment its Open() (p. 2?) method. See it for more details.

Note, drivers do not normally set their own m_poDriver value, so a direct call to this method (instead of
indirectly via OGRSFDriverRegistrar (p. ??)) will usually result in a datasource that does not know what
driver it relates to if GetDriver() is called on the datasource. The application may directly call SetDriver()
after opening with this method to avoid this problem.

For drivers supporting the VSI virtual file API, it is possible to open a file in a .zip archive (see VSIInstal-
1ZipFileHandler() (p. ??)), in a .tar/.tar.gz/.tgz archive (see VSIInstallTarFileHandler() (p.??)) or on a
HTTP / FTP server (see VSIInstallCurlFileHandler() (p. ??))

This method is the same as the C function OGR_Dr_Open() (p. ??).

Parameters:

pszName the name of the file, or data source to try and open.

bUpdate TRUE if update access is required, otherwise FALSE (the default).

Returns:

NULL on error or if the pass name is not supported by this driver, otherwise a pointer to an OGR-
DataSource (p. ??). This OGRDataSource (p. ??) should be closed by deleting the object when it is
no longer needed.

Referenced by OGRSFDriverRegistrar::Open().

13.68.2.6 int OGRSFDriver::TestCapability (const char * pszCapability) [pure virtuall]

Test if capability is available. One of the following data source capability names can be passed into this
method, and a TRUE or FALSE value will be returned indicating whether or not the capability is available
for this object.

13.68 OGRSFDriver Class Reference 297

* ODrCCreateDataSource: True if this driver can support creating data sources.

* ODrCDeleteDataSource: True if this driver supports deleting data sources.

The #define macro forms of the capability names should be used in preference to the strings themselves to
avoid mispelling.

This method is the same as the C function OGR_Dr_TestCapability() (p. ??).

Parameters:

pszCapability the capability to test.

Returns:

TRUE if capability available otherwise FALSE.

Referenced by CopyDataSource().

The documentation for this class was generated from the following files:

e ogrsf_frmts.h
 ogrsf_frmts.dox
* ogrsfdriver.cpp

298 Class Documentation

13.69 OGRSFDriverRegistrar Class Reference

#include <ogrsf_frmts.h>

Public Member Functions

* void RegisterDriver (OGRSFDriver xpoDriver)

Add a driver to the list of registered drivers.

¢ void DeregisterDriver (OGRSFDriver *poDriver)

Remove the passed driver from the list of registered drivers.

¢ int GetDriverCount (void)

Fetch the number of registered drivers.

¢ OGRSFDriver * GetDriver (int iDriver)

Fetch the indicated driver.

¢ OGRSFDriver x GetDriverByName (const char)

Fetch the indicated driver.

¢ int GetOpenDSCount ()

Return the number of opened datasources.

¢ OGRDataSource x GetOpenDS (int)

Return the iDS th datasource opened.

¢ void AutoLoadDrivers ()
Auto-load GDAL drivers from shared libraries.

Static Public Member Functions

* static OGRSFDriverRegistrar = GetRegistrar ()

Return the driver manager, creating one if none exist.

« static OGRDataSource * Open (const char xpszName, int bUpdate=FALSE, OGRSFDriver
s*xppoDriver=NULL)

Open a file / data source with one of the registered drivers.

13.69.1 Detailed Description

Singleton manager for OGRSFDriver (p.??) instances that will be used to try and open datasources.
Normally the registrar is populated with standard drivers using the OGRRegisterAll() (p. ??) function and
does not need to be directly accessed. The driver registrar and all registered drivers may be cleaned up on
shutdown using OGRCleanupAll() (p. ??).

13.69 OGRSFDriverRegistrar Class Reference 299

13.69.2 Member Function Documentation
13.69.2.1 void OGRSFDriverRegistrar::AutoLoadDrivers ()

Auto-load GDAL drivers from shared libraries. This function will automatically load drivers from shared
libraries. It searches the "driver path" for .so (or .dll) files that start with the prefix "ogr_X.so". It then tries
to load them and then tries to call a function within them called RegisterOGRX() where the "X’ is the same
as the remainder of the shared library basename, or failing that to call GDALRegisterMe().

There are a few rules for the driver path. If the GDAL_DRIVER_PATH environment variable it set, it is
taken to be a list of directories to search separated by colons on unix, or semi-colons on Windows.

If that is not set the following defaults are used:

» Linux/Unix: <prefix>/lib/gdalplugins is searched or /ust/local/lib/gdalplugins if the install prefix is
not known.

* MacOSX: <prefix>/Pluglns is searched, or /usr/local/lib/gdalplugins if the install prefix is not
known. Also, the framework directory /Library/Application Support/GDAL/Pluglns is searched.

* Win32: <prefix>/lib/gdalplugins if the prefix is known (normally it is not), otherwise the gdalplug-
ins subdirectory of the directory containing the currently running executable is used.

References CPLFormFilename(), CPLGetBasename(), CPLGetDirname(), CPLGetExecPath(), CPLGe-
tExtension(), CPLGetSymbol(), and VSIStatL().

Referenced by OGRRegisterAll().
13.69.2.2 void OGRSFDriverRegistrar::DeregisterDriver (OGRSFDriver * poDriver)

Remove the passed driver from the list of registered drivers. This method is the same as the C function
OGRDeregisterDriver() (p. ??).

Parameters:

poDriver the driver to deregister.

Since:

GDAL 1.8.0

Referenced by OGRDeregisterDriver().

13.69.2.3 OGRSFDriver x OGRSFDriverRegistrar::GetDriver (int iDriver)
Fetch the indicated driver. This method is the same as the C function OGRGetDriver() (p. ??).

Parameters:

iDriver the driver index, from O to GetDriverCount() (p. ??)-1.

Returns:

the driver, or NULL if iDriver is out of range.

Referenced by OGRGetDriver().

300 Class Documentation

13.69.2.4 OGRSFDriver « OGRSFDriverRegistrar::GetDriverByName (const char * pszName)

Fetch the indicated driver. This method is the same as the C function OGRGetDriverByName

Parameters:

pszName the driver name

Returns:

the driver, or NULL if no driver with that name is found

Referenced by OGRGetDriverByName().

13.69.2.5 int OGRSFDriverRegistrar::GetDriverCount (void)

Fetch the number of registered drivers. This method is the same as the C function OGRGetDriver Count()
(P-??7).

Returns:

the drivers count.

Referenced by OGRGetDriverCount().

13.69.2.6 OGRDataSource x OGRSFDriverRegistrar::GetOpenDS (int iDS)

Return the iDS th datasource opened. This method is the same as the C function OGRGetOpenDS()
(P-??7).

Parameters:

iDS the index of the dataset to return (between 0 and GetOpenDSCount() (p.??) - 1)

Referenced by OGRGetOpenDS().

13.69.2.7 int OGRSFDriverRegistrar::GetOpenDSCount () [inline]

Return the number of opened datasources. This method is the same as the C function OGRGetOpenD-
SCount() (p.??)

Returns:

the number of opened datasources.

Referenced by OGRGetOpenDSCount().

13.69.2.8 OGRSFDriverRegistrar « OGRSFDriverRegistrar::GetRegistrar () [static]

Return the driver manager, creating one if none exist. Fetch registrar.

13.69 OGRSFDriverRegistrar Class Reference 301

Returns:

the driver manager.

This static method should be used to fetch the singleton registrar. It will create a registrar if there is not
already one in existance.

Returns:

the current driver registrar.

Referenced by OGRDataSource::ExecuteSQL(), OGRDeregisterDriver(), OGRGetDriverByName(),
OGRGetOpenDS(), OGRGetOpenDSCount(), OGRRegisterAll(), OGRRegisterDriver(), OGRRelease-
DataSource(), Open(), and OGRDataSource::Release().

13.69.2.9 OGRDataSource x* OGRSFDriverRegistrar::Open (const char *x pszName, int bUpdate =
FALSE, OGRSFDriver * ppoDriver = NULL) [static]

Open a file / data source with one of the registered drivers. This method loops through all the drivers
registered with the driver manager trying each until one succeeds with the given data source. This method
is static. Applications don’t normally need to use any other OGRSFDriverRegistrar (p.??) methods
directly, nor do they normally need to have a pointer to an OGRSFDriverRegistrar (p. ??) instance.

If this method fails, CPLGetLastErrorMsg() (p.??) can be used to check if there is an error message
explaining why.

For drivers supporting the VSI virtual file API, it is possible to open a file in a .zip archive (see VSIInstal-
1ZipFileHandler() (p.??)), in a .tar/.tar.gz/.tgz archive (see VSIInstallTarFileHandler() (p.??)) or on a
HTTP / FTP server (see VSIInstallCurlFileHandler() (p.??))

This method is the same as the C function OGROpen() (p. ??).

Parameters:

pszName the name of the file, or data source to open. UTF-8 encoded.
bUpdate FALSE for read-only access (the default) or TRUE for read-write access.

ppoDriver if non-NULL, this argument will be updated with a pointer to the driver which was used to
open the data source.

Returns:

NULL on error or if the pass name is not supported by this driver, otherwise a pointer to an OGR-
DataSource (p. ??). This OGRDataSource (p. ??) should be closed by deleting the object when it is
no longer needed.

Example:
OGRDataSource (p.??) =*poDS;

poDS = OGRSFDriverRegistrar::Open (p.??) ("polygon.shp");
if (poDS == NULL)
{

return;

}

. use the data source ...

302 Class Documentation

OGRDataSource: :DestroyDataSource (poDS) ;

References OGRDataSource::GetDriver(), OGRSFDriver::GetName(), GetRegistrar(), OGRSF-
Driver::Open(), and OGRDataSource::Reference().

Referenced by OGROpen().

13.69.2.10 void OGRSFDriverRegistrar::RegisterDriver (OGRSFDriver x poDriver)

Add a driver to the list of registered drivers. If the passed driver is already registered (based on pointer
comparison) then the driver isn’t registered. New drivers are added at the end of the list of registered
drivers.

This method is the same as the C function OGRRegisterDriver() (p. ??).

Parameters:

poDriver the driver to add.

References OGRSFDriver::GetName().
Referenced by OGRRegisterDriver().

The documentation for this class was generated from the following files:

e ogrsf_frmts.h
* ogrsf_frmts.dox
* ogrsfdriverregistrar.cpp

13.70 OGRSpatialReference Class Reference 303

13.70 OGRSpatialReference Class Reference

#include <ogr_spatialref.h>

Public Member Functions

¢ OGRSpatialReference (const char x=NULL)

Constructor.

* virtual ~OGRSpatialReference ()
OGRSpatialReference (p. ??) destructor.

¢ int Reference ()

Increments the reference count by one.

¢ int Dereference ()

Decrements the reference count by one.

¢ int GetReferenceCount () const

Fetch current reference count.

¢ void Release ()

Decrements the reference count by one, and destroy if zero.

¢ OGRSpatialReference * Clone () const
Make a duplicate of this OGRSpatialReference (p.??).

¢ OGRSpatialReference + CloneGeogCS () const
Make a duplicate of the GEOGCS node of this OGRSpatialReference (p.??) object.

* OGRErr exportToWkt (char *x) const
Convert this SRS into WKT format.

* OGRErr exportToPretty Wkt (char +x, int=FALSE) const
¢ OGRErr exportToProj4 (char *x) const

Export coordinate system in PROJ.4 format.

¢ OGRErr exportToPCI (char xx, char *x, double *x) const

Export coordinate system in PCI projection definition.

¢ OGREIrr exportToUSGS (long *, long *, double **, long *) const
Export coordinate system in USGS GCTP projection definition.

¢ OGREir exportToXML (char *x, const char x=NULL) const

Export coordinate system in XML format.

¢ OGREIr exportToPanorama (long *, long *, long *, long *, double *) const
* OGREtrr exportToERM (char xpszProj, char xpszDatum, char *pszUnits)
* OGRErr exportToMICoordSys (char xx) const

304 Class Documentation

Export coordinate system in Mapinfo style CoordSys format.

* OGRErr importFromWkt (char xx)
Import from WKT string.

* OGRErr importFromProj4 (const char x)
Import PROJ.4 coordinate string.

¢ OGRErr importFromEPSG (int)
Initialize SRS based on EPSG GCS or PCS code.

* OGRErr importFromEPSGA (int)
Initialize SRS based on EPSG GCS or PCS code.

¢ OGRErr importFromESRI (char)

Import coordinate system from ESRI .prj format(s).

¢ OGRErr importFromPCI (const char *, const char *=NULL, double *=NULL)

Import coordinate system from PCI projection definition.

* OGRErr importFromUSGS (long iProjSys, long iZone, double *padfPrjParams, long iDatum, int
bAnglesInPackedDMSFormat=TRUE)

Import coordinate system from USGS projection definition.

¢ OGRErr importFromPanorama (long, long, long, double)
¢ OGRErr importFromOzi (const char *, const char *, const char)
¢ OGRErr importFromWMSAUTO (const char *pszAutoDef)

Initialize from WMSAUTO string.

¢ OGRErr importFromXML (const char *)
Import coordinate system from XML format (GML only currently).

¢ OGRErr importFromDict (const char xpszDict, const char xpszCode)
¢ OGRErr importFromURN (const char)

Initialize from OGC URN.

* OGRErr importFromERM (const char xpszProj, const char xpszDatum, const char xpszUnits)
¢ OGRErr importFromUrl (const char x)

Set spatial reference from a URL.

* OGRErr importFromMICoordSys (const char)
Import Mapinfo style CoordSys definition.

¢ OGRErr morphToESRI ()
Convert in place to ESRI WKT format.

¢ OGRErr morphFromESRI ()
Convert in place from ESRI WKT format.

¢ OGRErr Validate ()

13.70 OGRSpatialReference Class Reference 305

Validate SRS tokens.

¢ OGRErr StripCTParms (OGR_SRSNode x=NULL)
Strip OGC CT Parameters.

* OGREirr StripVertical ()

Convert a compound cs into a horizontal CS.

* OGRErr FixupOrdering ()

Correct parameter ordering to match CT Specification.

* OGRErr Fixup ()

Fixup as needed.

¢ int EPSGTreatsAsLatLong ()

This method returns TRUE if EPSG feels this geographic coordinate system should be treated as having
lat/long coordinate ordering.

¢ const char * GetAxis (const char xpszTargetKey, int iAxis, OGRAXxisOrientation *peOrientation)
const

Fetch the orientation of one axis.

* OGREIr SetAxes (const char xpszTargetKey, const char xpszXAxisName, OGRAXxisOrientation eX-
AxisOrientation, const char *pszYAxisName, OGRAxisOrientation e YAxisOrientation)

Set the axes for a coordinate system.

¢ void SetRoot (OGR_SRSNode x)
Set the root SRS node.

* OGR_SRSNode * GetAttrNode (const char x)

Find named node in tree.

¢ const char x GetAttrValue (const char *, int=0) const

Fetch indicated attribute of named node.

¢ OGRErr SetNode (const char *, const char)

Set attribute value in spatial reference.

¢ OGREIr SetLinearUnitsAndUpdateParameters (const char xpszName, double dfInMeters)

Set the linear units for the projection.

* OGREIr SetLinearUnits (const char xpszName, double dfInMeters)

Set the linear units for the projection.

* OGRErr SetTargetLinearUnits (const char spszTargetKey, const char xpszName, double dfln-
Meters)

Set the linear units for the projection.

¢ double GetLinearUnits (char «x=NULL) const

Fetch linear projection units.

306

Class Documentation

double GetTargetLinearUnits (const char xpszTargetKey, char sxppszRetName=NULL) const

Fetch linear units for target.

OGRErr SetAngularUnits (const char xpszName, double dfInRadians)

Set the angular units for the geographic coordinate system.

double GetAngularUnits (char «x=NULL) const

Fetch angular geographic coordinate system units.

double GetPrimeMeridian (char x+x=NULL) const

Fetch prime meridian info.

int IsGeographic () const

Check if geographic coordinate system.

int IsProjected () const

Check if projected coordinate system.

int IsGeocentric () const

Check if geocentric coordinate system.

int IsLocal () const

Check if local coordinate system.

int IsVertical () const

Check if vertical coordinate system.

int IsCompound () const

Check if coordinate system is compound.

int IsSameGeogCS (const OGRSpatialReference) const
Do the GeogCS’es match?

int IsSameVertCS (const OGRSpatialReference *) const
Do the VertCS’es match?

int IsSame (const OGRSpatialReference) const

Do these two spatial references describe the same system ?

void Clear ()

Wipe current definition.

OGRErr SetLocalCS (const char)
Set the user visible LOCAL_CS name.

OGRErr SetProjCS (const char)
Set the user visible PROJCS name.

OGRErr SetProjection (const char)

13.70 OGRSpatialReference Class Reference 307

Set a projection name.

* OGREI:r SetGeocCS (const char xpszGeocName)
Set the user visible GEOCCS name.

* OGRErr SetGeogCS (const char xpszGeogName, const char spszDatumName, const char
xpszEllipsoidName, double dfSemiMajor, double dfInvFlattening, const char xpszPMName=NULL,
double dfPMOffset=0.0, const char *pszUnits=NULL, double dfConvertToRadians=0.0)

Set geographic coordinate system.

* OGRErr SetWellKnownGeogCS (const char)

Set a GeogCS based on well known name.

* OGRErr CopyGeogCSFrom (const OGRSpatialReference +xpoSrcSRS)
Copy GEOGCS from another OGRSpatialReference (p.??).

¢ OGREIr SetVertCS (const char xpszVertCSName, const char spszVertDatumName, int nVertDa-
tumClass=2005)

Set the user visible VERT_CS name.

* OGRErr SetCompoundCS (const char spszName, const OGRSpatialReference «poHorizSRS,
const OGRSpatialReference xpoVertSRS)

Setup a compound coordinate system.

¢ OGRErr SetFromUserInput (const char)

Set spatial reference from various text formats.

¢ OGRErr SetTOWGSS84 (double, double, double, double=0.0, double=0.0, double=0.0, dou-
ble=0.0)

Set the Bursa-Wolf conversion to WGS84.

* OGRErr GetTOWGSS84 (double xpadfCoef, int nCoeff=7) const
Fetch TOWGS84 parameters, if available.

¢ double GetSemiMajor (OGRErr *=NULL) const

Get spheroid semi major axis.

¢ double GetSemiMinor (OGRErr *=NULL) const

Get spheroid semi minor axis.

¢ double GetInvFlattening (OGRErr x=NULL) const

Get spheroid inverse flattening.

¢ OGREIr SetAuthority (const char xpszTargetKey, const char xpszAuthority, int nCode)

Set the authority for a node.

¢ OGRErr AutoldentifyEPSG ()
Set EPSG authority info if possible.

* const char * GetAuthorityCode (const char xpszTargetKey) const

308

Class Documentation

Get the authority code for a node.

const char * GetAuthorityName (const char spszTargetKey) const

Get the authority name for a node.

const char * GetExtension (const char spszTargetKey, const char xpszName, const char
spszDefault=NULL) const

Fetch extension value.

OGREIr SetExtension (const char xpszTargetKey, const char «pszName, const char *pszValue)

Set extension value.

int FindProjParm (const char xpszParameter, const OGR_SRSNode «poPROJCS=NULL) const

Return the child index of the named projection parameter on its parent PROJCS node.

OGRErr SetProjParm (const char %, double)

Set a projection parameter value.

double GetProjParm (const char *, double=0.0, OGRErr *=NULL) const

Fetch a projection parameter value.

OGRErr SetNormProjParm (const char *, double)

Set a projection parameter with a normalized value.

double GetNormProjParm (const char *, double=0.0, OGRErr x=NULL) const

Fetch a normalized projection parameter value.

OGRErr SetACEA (double dfStdP1, double dfStdP2, double dfCenterLat, double dfCenterLong,
double dfFalseEasting, double dfFalseNorthing)

OGRErr SetAE (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double df-
FalseNorthing)

OGREIrr SetBonne (double dfStdP1, double dfCentralMeridian, double dfFalseEasting, double df-
FalseNorthing)

OGRErr SetCEA (double dfStdP1, double dfCentralMeridian, double dfFalseEasting, double df-
FalseNorthing)

OGRErr SetCS (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double df-
FalseNorthing)

OGREiTr SetEC (double dfStdP1, double dfStdP2, double dfCenterLat, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

OGRErr SetEckert (int nVariation, double dfCentralMeridian, double dfFalseEasting, double df-
FalseNorthing)

OGRETrr SetEquirectangular (double dfCenterLat, double dfCenterLong, double dfFalseEasting,
double dfFalseNorthing)

OGRErr SetEquirectangular2 (double dfCenterLat, double dfCenterLong, double dfPseudoStdPar-
allell, double dfFalseEasting, double dfFalseNorthing)

OGRErr SetGEOS (double dfCentralMeridian, double dfSatelliteHeight, double dfFalseEasting,
double dfFalseNorthing)

OGREir SetGH (double dfCentralMeridian, double dfFalseEasting, double dfFalseNorthing)
OGRErr SetIGH ()

OGRETr SetGS (double dfCentralMeridian, double dfFalseEasting, double dfFalseNorthing)

13.70 OGRSpatialReference Class Reference 309

* OGRErr SetGaussSchreiberTMercator (double dfCenterLat, double dfCenterLong, double dfS-
cale, double dfFalseEasting, double dfFalseNorthing)

* OGRErr SetGnomonic (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double
dfFalseNorthing)

* OGRErr SetHOM (double dfCenterLat, double dfCenterLong, double dfAzimuth, double dfRect-
ToSkew, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Set a Hotine Oblique Mercator projection using azimuth angle.

¢ OGRErr SetHOM2PNO (double dfCenterLat, double dfLatl, double dfLongl, double dfLat2, dou-
ble dfLong2, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Set a Hotine Oblique Mercator projection using two points on projection centerline.

¢ OGRErr SetIWMPolyconic (double dflatl, double dfLat2, double dfCenterLong, double df-
FalseEasting, double dfFalseNorthing)

¢ OGREIr SetKrovak (double dfCenterLat, double dfCenterLong, double dfAzimuth, double dfPseu-
doStdParallelLat, double dfScale, double dfFalseEasting, double dfFalseNorthing)

* OGREir SetLAEA (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double df-
FalseNorthing)

¢ OGREI:r SetLLCC (double dfStdP1, double dfStdP2, double dfCenterLat, double dfCenterLLong, dou-
ble dfFalseEasting, double dfFalseNorthing)

¢ OGRErr SetLCCISP (double dfCenterLat, double dfCenterLong, double dfScale, double df-
FalseEasting, double dfFalseNorthing)

* OGRErr SetLCCB (double dfStdP1, double dfStdP2, double dfCenterLat, double dfCenterLong,
double dfFalseEasting, double dfFalseNorthing)

* OGRErr SetMC (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double df-
FalseNorthing)

* OGRErr SetMercator (double dfCenterLat, double dfCenterLong, double dfScale, double df-
FalseEasting, double dfFalseNorthing)

* OGRErr SetMollweide (double dfCentralMeridian, double dfFalseEasting, double dfFalseNorthing)

* OGRE:r SetNZMG (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double df-
FalseNorthing)

¢ OGRE:r SetOS (double dfOriginLat, double dfCMeridian, double dfScale, double dfFalseEasting,
double dfFalseNorthing)

¢ OGREIr SetOrthographic (double dfCenterLat, double dfCenterLong, double dfFalseEasting, dou-
ble dfFalseNorthing)

¢ OGREI:r SetPolyconic (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double
dfFalseNorthing)

¢ OGREir SetPS (double dfCenterLat, double dfCenterLong, double dfScale, double dfFalseEasting,
double dfFalseNorthing)

* OGREir SetRobinson (double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

* OGREir SetSinusoidal (double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

* OGRErr SetStereographic (double dfCenterLat, double dfCenterLong, double dfScale, double df-
FalseEasting, double dfFalseNorthing)

* OGRE:r SetSOC (double dfLatitudeOfOrigin, double dfCentralMeridian, double dfFalseEasting,
double dfFalseNorthing)

* OGRE:r SetTM (double dfCenterLat, double dfCenterLong, double dfScale, double dfFalseEasting,
double dfFalseNorthing)

* OGRErr SetTM Variant (const char *pszVariantName, double dfCenterLat, double dfCenterLong,
double dfScale, double dfFalseEasting, double dfFalseNorthing)

* OGRErr SetTMG (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double df-
FalseNorthing)

310 Class Documentation

* OGRErr SetTMSO (double dfCenterLat, double dfCenterLL.ong, double dfScale, double dfFalseEast-
ing, double dfFalseNorthing)

¢ OGREir SetTPED (double dfLatl, double dfLongl, double dfLat2, double dfLong2, double df-
FalseEasting, double dfFalseNorthing)

* OGRErr SetVDG (double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

¢ OGRErr SetUTM (int nZone, int bNorth=TRUE)

Set UTM projection definition.

¢ int GetUTMZone (int *pbNorth=NULL) const

Get utm zone information.

* OGRErr SetWagner (int nVariation, double dfCenterLat, double dfFalseEasting, double dfFalseNor-
thing)

¢ OGREir SetStatePlane (int nZone, int bNAD83=TRUE, const char *pszOverrideUnitName=NULL,
double dfOverrideUnit=0.0)

Set State Plane projection definition.

Static Public Member Functions

« static void DestroySpatialReference (OGRSpatialReference «poSRS)
OGRSpatialReference (p. ??) destructor.

13.70.1 Detailed Description

This class respresents a OpenGIS Spatial Reference System, and contains methods for converting between
this object organization and well known text (WKT) format. This object is reference counted as one
instance of the object is normally shared between many OGRGeometry (p. ??) objects.

Normally application code can fetch needed parameter values for this SRS using GetAttrValue() (p. ??),
but in special cases the underlying parse tree (or OGR_SRSNode (p. ??) objects) can be accessed more
directly.

See the tutorial for more information on how to use this class.

13.70.2 Constructor & Destructor Documentation
13.70.2.1 OGRSpatialReference::OGRSpatialReference (const char x pszWKT = NULL)

Constructor. This constructor takes an optional string argument which if passed should be a WKT repre-
sentation of an SRS. Passing this is equivalent to not passing it, and then calling importFromWkt() (p. ??)
with the WKT string.

Note that newly created objects are given a reference count of one.

The C function OSRNewSpatialReference() (p. ??) does the same thing as this constructor.

Parameters:

pszWKT well known text definition to which the object should be initialized, or NULL (the default).

References importFromWkt().

13.70 OGRSpatialReference Class Reference 311

13.70.2.2 OGRSpatialReference::~OGRSpatialReference () [virtual]

OGRSpatialReference (p.??) destructor. The C function OSRDestroySpatialReference()
(p-??) does the same thing as this method. Preferred C++ method : OGRSpatialRefer-
ence::DestroySpatialReference() (p.??)

Deprecated

13.70.3 Member Function Documentation
13.70.3.1 OGRErr OGRSpatialReference::AutoldentifyEPSG ()

Set EPSG authority info if possible. This method inspects a WKT definition, and adds EPSG authority
nodes where an aspect of the coordinate system can be easily and safely corresponded with an EPSG
identifier. In practice, this method will evolve over time. In theory it can add authority nodes for any object
(ie. spheroid, datum, GEOGCS, units, and PROJCS) that could have an authority node. Mostly this is
useful to inserting appropriate PROJCS codes for common formulations (like UTM n WGS84).

If it success the OGRSpatialReference (p. ??) is updated in place, and the method return OGRERR_-
NONE. If the method fails to identify the general coordinate system OGRERR_UNSUPPORTED_SRS is

returned but no error message is posted via CPLError().

This method is the same as the C function OSRAutoldentifyEPSG() (p. ??).

Returns:
OGRERR_NONE or OGRERR_UNSUPPORTED_SRS.

References GetAuthorityCode(), GetAuthorityName(), GetUTMZone(), IsGeographic(), IsProjected(), and
SetAuthority().

13.70.3.2 void OGRSpatialReference::Clear ()
Wipe current definition. Returns OGRSpatialReference (p. ??) to a state with no definition, as it exists
when first created. It does not affect reference counts.

Referenced by CopyGeogCSFrom(), importFromERM(), importFromOzi(), importFromPanorama(), im-
portFromPCI(), importFromProj4(), importFromURNY(), importFromWkt(), importFromWMSAUTO(),
importFromXML(), SetCompoundCS(), SetFromUserInput(), SetGeogCS(), SetStatePlane(), and
SetVertCS().

13.70.3.3 OGRSpatialReference + OGRSpatialReference::Clone () const

Make a duplicate of this OGRSpatialReference (p. ??). This method is the same as the C function OSR-
Clone() (p. ??).

Returns:

anew SRS, which becomes the responsibility of the caller.

References OGR_SRSNode::Clone().
Referenced by exportToPretty Wkt().

312 Class Documentation

13.70.3.4 OGRSpatialReference x« OGRSpatialReference::CloneGeogCS () const
Make a duplicate of the GEOGCS node of this OGRSpatialReference (p. ??) object.

Returns:
anew SRS, which becomes the responsibility of the caller.
References OGR_SRSNode::AddChild(), OGR_SRSNode::Clone(), CPLAtof(), GetAttrNode(), IsGeo-

centric(), SetAngularUnits(), and SetRoot().
Referenced by morphFromESRI().

13.70.3.5 OGRErr OGRSpatialReference::CopyGeogCSFrom (const OGRSpatialReference *
poSrcSRS)

Copy GEOGCS from another OGRSpatialReference (p.??). The GEOGCS information is copied into
this OGRSpatialReference (p. ??) from another. If this object has a PROJCS root already, the GEOGCS
is installed within it, otherwise it is installed as the root.

Parameters:

poSrcSRS the spatial reference to copy the GEOGCS information from.

Returns:

OGRERR_NONE on success or an error code.

References Clear(), OGR_SRSNode::Clone(), OGR_SRSNode::DestroyChild(), OGR_-
SRSNode::FindChild(), GetAttrNode(), OGR_SRSNode::InsertChild(), IsGeocentric(), and SetRoot().

Referenced by importFromERM(), importFromESRI(), importFromOzi(), importFromPanorama(), im-
portFromPCI(), importFromProj4(), morphFromESRI(), SetGeogCS(), and SetWellKnownGeogCS().

13.70.3.6 int OGRSpatialReference::Dereference ()

Decrements the reference count by one. The method does the same thing as the C function OSRDerefer-
ence() (p.??).
Returns:

the updated reference count.

Referenced by Release().

13.70.3.7 void OGRSpatialReference::DestroySpatialReference (OGRSpatialReference x poSRS)
[static]

OGRSpatialReference (p.??) destructor. This static method will destroy a OGRSpatialReference
(p-??). It is equivalent to calling delete on the object, but it ensures that the deallocation is properly
executed within the OGR libraries heap on platforms where this can matter (win32).

This function is the same as OSRDestroySpatialReference() (p. ??)

13.70 OGRSpatialReference Class Reference 313

Parameters:

PoSRS the object to delete

Since:

GDAL 1.7.0

13.70.3.8 int OGRSpatialReference::EPSGTreatsAsLatLong ()

This method returns TRUE if EPSG feels this geographic coordinate system should be treated as having
lat/long coordinate ordering. Currently this returns TRUE for all geographic coordinate systems with an
EPSG code set, and AXIS values set defining it as lat, long. Note that coordinate systems with an EPSG
code and no axis settings will be assumed to not be lat/long.

FALSE will be returned for all coordinate systems that are not geographic, or that do not have an EPSG
code set.

This method is the same as the C function OSREPSGTreatsAsLatLong() (p. ??).

Returns:

TRUE or FALSE.

References GetAttrNode(), GetAuthorityName(), OGR_SRSNode::GetChild(), OGR_-
SRSNode::GetChildCount(), OGR_SRSNode::GetValue(), and IsGeographic().

13.70.3.9 OGRErr OGRSpatialReference::exportTOERM (char * pszProj, char x pszDatum, char
* pszUnits)

Convert coordinate system to ERMapper format.

Parameters:
pszProj 32 character buffer to receive projection name.
pszDatum 32 character buffer to recieve datum name.

pszUnits 32 character buffer to receive units name.

Returns:

OGRERR_NONE on success, OGRERR_SRS_UNSUPPORTED if not translation is found, or
OGRERR_FAILURE on other failures.

References GetAttrValue(), GetAuthorityCode(), GetAuthorityName(), GetLinearUnits(), GetUTMZone(),
importFromDict(), IsGeographic(), and IsProjected().

13.70.3.10 OGRErr OGRSpatialReference::exportToMICoordSys (char *x ppszResult) const

Export coordinate system in Mapinfo style CoordSys format. Note that the returned WKT string should be
freed with OGRFree() or CPLFree() when no longer needed. It is the responsibility of the caller.

This method is the same as the C function OSRExportToMICoordSys() (p. ??).

314 Class Documentation

Parameters:

ppszResult pointer to which dynamically allocated Mapinfo CoordSys definition will be assigned.

Returns:

OGRERR_NONE on success, OGRERR_FAILURE on failure, OGRERR_UNSUPPORTED_-
OPERATION if MITAB library was not linked in.

13.70.3.11 OGRErr OGRSpatialReference::exportToPanorama (long * piProjSys, long x
piDatum, long x piEllips, long x piZone, double x padfPrjParams) const
Export coordinate system in "Panorama" GIS projection definition.

This method is the equivalent of the C function OSRExportToPanorama).

Parameters:
piProjSys Pointer to variable, where the projection system code will be returned.
piDatum Pointer to variable, where the coordinate system code will be returned.
piEllips Pointer to variable, where the spheroid code will be returned.
piZone Pointer to variable, where the zone for UTM projection system will be returned.

padfPrjParams an existing 7 double buffer into which the projection parameters will be placed. See
importFromPanorama() (p. ??) for the list of parameters.

Returns:

OGRERR_NONE on success or an error code on failure.

References GetAttrValue(), GetlnvFlattening(), GetNormProjParm(), GetSemiMajor(), GetUTMZone(),
and IsLocal().

13.70.3.12 OGRErr OGRSpatialReference::exportToPCI (char *x ppszProj, char xx ppszUnits,
double xx ppadfPrjParams) const

Export coordinate system in PCI projection definition. Converts the loaded coordinate reference system
into PCI projection definition to the extent possible. The strings returned in ppszProj, ppszUnits and
ppadfPrjParams array should be deallocated by the caller with CPLFree() when no longer needed.

LOCAL_CS coordinate systems are not translatable. An empty string will be returned along with
OGRERR_NONE.

This method is the equivelent of the C function OSRExportToPCI() (p. ??).

Parameters:

ppszProj pointer to which dynamically allocated PCI projection definition will be assigned.
ppszUnits pointer to which dynamically allocated units definition will be assigned.

ppadfPrjParams pointer to which dynamically allocated array of 17 projection parameters will be
assigned. See importFromPCI() (p. ??) for the list of parameters.

Returns:

OGRERR_NONE on success or an error code on failure.

13.70 OGRSpatialReference Class Reference 315

References CPLAtof(), GetAttrNode(), GetAttrValue(), GetAuthorityCode(), GetAuthorityName(),
OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), GetlnvFlattening(), GetLinearUnits(),
GetNormProjParm(), GetSemiMajor(), GetTOWGS84(), GetUTMZone(), OGR_SRSNode::GetValue(),
and IsLocal().

13.70.3.13 OGRErr OGRSpatialReference::exportToPrettyWkt (char +x ppszResult, int bSimplify
= FALSE) const
Convert this SRS into a a nicely formatted WKT string for display to a person.

Note that the returned WKT string should be freed with OGRFree() or CPLFree() when no longer needed.
It is the responsibility of the caller.

This method is the same as the C function OSRExportToPrettyWkt() (p. ??).

Parameters:

ppszResult the resulting string is returned in this pointer.
bSimplify TRUE if the AXIS, AUTHORITY and EXTENSION nodes should be stripped off

Returns:
currently OGRERR_NONE is always returned, but the future it is possible error conditions will de-

velop.

References Clone(), and OGR_SRSNode::StripNodes().

13.70.3.14 OGRErr OGRSpatialReference::exportToProj4 (char xx ppszProj4) const

Export coordinate system in PROJ.4 format. Converts the loaded coordinate reference system into PROJ.4
format to the extent possible. The string returned in ppszProj4 should be deallocated by the caller with
CPLFree() when no longer needed.

LOCAL_CS coordinate systems are not translatable. An empty string will be returned along with
OGRERR_NONE.

This method is the equivelent of the C function OSRExportToProj4() (p. ??).

Parameters:

ppszProj4 pointer to which dynamically allocated PROJ.4 definition will be assigned.

Returns:

OGRERR_NONE on success or an error code on failure.

References CPLAtof(), GetAttrNode(), GetAttrValue(), GetAuthorityCode(), GetAuthorityName(),
OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), GetExtension(), GetInvFlattening(),
GetLinearUnits(), OGR_SRSNode::GetNode(), GetNormProjParm(), GetSemiMajor(), GetSemiMinor(),
GetUTMZone(), OGR_SRSNode::GetValue(), IsGeocentric(), and IsGeographic().

13.70.3.15 OGRErr OGRSpatialReference::exportToUSGS (long * piProjSys, long x piZone,
double xx ppadfPrjParams, long x piDatum) const

Export coordinate system in USGS GCTP projection definition. This method is the equivalent of the C
function OSRExportToUSGS() (p. ??).

316 Class Documentation

Parameters:

PpiProjSys Pointer to variable, where the projection system code will be returned.

piZone Pointer to variable, where the zone for UTM and State Plane projection systems will be re-
turned.

ppadfPrjParams Pointer to which dynamically allocated array of 15 projection parameters will be
assigned. See importFromUSGS() (p. ??) for the list of parameters. Caller responsible to free
this array.

piDatum Pointer to variable, where the datum code will be returned.
Returns:
OGRERR_NONE on success or an error code on failure.

References GetAttrValue(), GetlnvFlattening(), GetNormProjParm(), GetSemiMajor(), GetUTMZone(),
and IsLocal().

13.70.3.16 OGRErr OGRSpatialReference::exportToWKkt (char xx ppszResult) const
Convert this SRS into WKT format. Note that the returned WKT string should be freed with OGRFree()

or CPLFree() when no longer needed. It is the responsibility of the caller.

This method is the same as the C function OSRExportToWkt() (p. ??).

Parameters:

ppszResult the resulting string is returned in this pointer.

Returns:
currently OGRERR_NONE is always returned, but the future it is possible error conditions will de-

velop.

References OGR_SRSNode::exportToWkt().

13.70.3.17 OGRErr OGRSpatialReference::exportToXML (char xx ppszRawXML, const char x
pszDialect = NULL) const

Export coordinate system in XML format. Converts the loaded coordinate reference system into XML
format to the extent possible. The string returned in ppszRawXML should be deallocated by the caller with
CPLFree() when no longer needed.

LOCAL_CS coordinate systems are not translatable. An empty string will be returned along with
OGRERR_NONE.

This method is the equivelent of the C function OSRExportToXML() (p. 2?).

Parameters:

ppszRawXML pointer to which dynamically allocated XML definition will be assigned.
pszDialect currently ignored. The dialect used is GML based.

Returns:

OGRERR_NONE on success or an error code on failure.

References IsGeographic(), and IsProjected().

13.70 OGRSpatialReference Class Reference 317

13.70.3.18 int OGRSpatialReference::FindProjParm (const char x pszParameter, const
OGR_SRSNode * poPROJCS = NULL) const

Return the child index of the named projection parameter on its parent PROJCS node.

Parameters:

pszParameter projection parameter to look for

poPROJCS projection CS node to look in. If NULL is passed, the PROJCS node of the SpatialRefer-
ence object will be searched.

Returns:

the child index of the named projection parameter. -1 on failure

References GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OGR_-
SRSNode::GetValue().

Referenced by GetProjParm(), and morphToESRI().

13.70.3.19 OGRErr OGRSpatialReference::Fixup ()

Fixup as needed. Some mechanisms to create WKT using OGRSpatialReference (p.??), and some im-
ported WKT, are not valid according to the OGC CT specification. This method attempts to fill in any
missing defaults that are required, and fixup ordering problems (using OSRFixupOrdering() (p.??)) so
that the resulting WKT is valid.

This method should be expected to evolve over time to as problems are discovered. The following are
amoung the fixup actions this method will take:

* Fixup the ordering of nodes to match the BNF WKT ordering, using the FixupOrdering() (p.??)
method.

* Add missing linear or angular units nodes.

This method is the same as the C function OSRFixup() (p. 2?).

Returns:

OGRERR_NONE on success or an error code if something goes wrong.

References CPLAtof(), OGR_SRSNode::FindChild(), FixupOrdering(), GetAttrNode(), SetAngu-
larUnits(), and SetLinearUnits().

Referenced by morphToESRI().

13.70.3.20 OGRErr OGRSpatialReference::FixupOrdering ()

Correct parameter ordering to match CT Specification. Some mechanisms to create WKT using OGRSpa-
tialReference (p. ??), and some imported WKT fail to maintain the order of parameters required according
to the BNF definitions in the OpenGIS SF-SQL and CT Specifications. This method attempts to massage
things back into the required order.

This method is the same as the C function OSRFixupOrdering() (p. ??).

318 Class Documentation

Returns:

OGRERR_NONE on success or an error code if something goes wrong.

Referenced by Fixup(), importFromEPSGA(), importFromOzi(), importFromPanorama(), import-
FromPCI(), importFromUSGS(), and morphFromESRI().

13.70.3.21 double OGRSpatialReference::GetAngularUnits (char xx ppszName = NULL) const

Fetch angular geographic coordinate system units. If no units are available, a value of "degree" and SRS_-
UA_DEGREE_CONYV will be assumed. This method only checks directly under the GEOGCS node for
units.

This method does the same thing as the C function OSRGetAngularUnits() (p. ??).

Parameters:

ppszName a pointer to be updated with the pointer to the units name. The returned value remains
internal to the OGRSpatialReference (p.??) and shouldn’t be freed, or modified. It may be
invalidated on the next OGRSpatialReference (p. ??) call.

Returns:

the value to multiply by angular distances to transform them to radians.

References CPLAtof(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(),
and OGR_SRSNode::GetValue().

Referenced by morphToESRI().

13.70.3.22 OGR_SRSNode x OGRSpatialReference::GetAttrNode (const char x pszNodePath)

Find named node in tree. This method does a pre-order traversal of the node tree searching for a node with
this exact value (case insensitive), and returns it. Leaf nodes are not considered, under the assumption that
they are just attribute value nodes.

If a node appears more than once in the tree (such as UNIT for instance), the first encountered will be
returned. Use GetNode() on a subtree to be more specific.

Parameters:

pszNodePath the name of the node to search for. May contain multiple components such as
"GEOGCS|UNIT".

Returns:

a pointer to the node found, or NULL if none.

References OGR_SRSNode::GetNode().

Referenced by CloneGeogCS(), CopyGeogCSFrom(), EPSGTreatsAsLatLong(), exportToPCI(), exportTo-
Proj4(), FindProjParm(), Fixup(), GetAngularUnits(), GetAttrValue(), GetInvFlattening(), GetPrimeMerid-
ian(), GetProjParm(), GetSemiMajor(), GetTargetLinearUnits(), GetTOWGS84(), importFromEPSG(),
importFromESRI(), importFromProj4(), IsGeographic(), IsProjected(), IsSame(), IsVertical(), mor-
phFromESRI(), morphToESRI(), SetAngularUnits(), SetAuthority(), SetGeocCS(), SetGeogCS(), Set-
LinearUnitsAndUpdateParameters(), SetLocalCS(), SetProjCS(), SetProjection(), SetProjParm(), Set-
StatePlane(), SetTargetLinearUnits(), SetTOWGS84(), and SetVertCS().

13.70 OGRSpatialReference Class Reference 319

13.70.3.23 const char *+ OGRSpatialReference::GetAttrValue (const char x pszNodeName, int
iAttr = 0) const

Fetch indicated attribute of named node. This method uses GetAttrNode() (p. ??) to find the named node,
and then extracts the value of the indicated child. Thus a call to GetAttrValue("UNIT",1) would return the
second child of the UNIT node, which is normally the length of the linear unit in meters.

This method does the same thing as the C function OSRGetAttrValue() (p. ??).

Parameters:

pszNodeName the tree node to look for (case insensitive).
iAttr the child of the node to fetch (zero based).

Returns:

the requested value, or NULL if it fails for any reason.

References GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OGR_-
SRSNode::GetValue().

Referenced by exportToERM(), exportToPanorama(), exportToPCI(), exportToProj4(), exportToUSGS(),
GetUTMZone(), IsSame(), IsSameGeogCS(), IsSameVertCS(), morphFromESRI(), morphToESRI(), and
SetUTMY).

13.70.3.24 const char x OGRSpatialReference::GetAuthorityCode (const char * pszTargetKey)
const

Get the authority code for a node. This method is used to query an AUTHORITY(] node from within the
WKT tree, and fetch the code value.
While in theory values may be non-numeric, for the EPSG authority all code values should be integral.

This method is the same as the C function OSRGetAuthorityCode() (p. ??).

Parameters:

pszlargetKey the partial or complete path to the node to get an authority from. ie. "PROJCS", "GE-
OGCS", "GEOGCS|UNIT" or NULL to search for an authority node on the root element.

Returns:

value code from authority node, or NULL on failure. The value returned is internal and should not be
freed or modified.

References OGR_SRSNode::FindChild(), OGR_SRSNode::GetChild(), OGR _-
SRSNode::GetChildCount(), and OGR_SRSNode::GetValue().

Referenced by AutoldentifyEPSG(), exportToERM(), exportToPCI(), exportToProj4(), and mor-
phToESRI().

13.70.3.25 const char * OGRSpatialReference::GetAuthorityName (const char x pszTargetKey)
const

Get the authority name for a node. This method is used to query an AUTHORITY([] node from within the
WKT tree, and fetch the authority name value.

320 Class Documentation

The most common authority is "EPSG".

This method is the same as the C function OSRGetAuthorityName() (p. ??).

Parameters:

pszlargetKey the partial or complete path to the node to get an authority from. ie. "PROJCS", "GE-
OGCS", "GEOGCS|UNIT" or NULL to search for an authority node on the root element.

Returns:

value code from authority node, or NULL on failure. The value returned is internal and should not be
freed or modified.

References OGR_SRSNode::FindChild(), OGR_SRSNode::GetChild(), OGR_-
SRSNode::GetChildCount(), and OGR_SRSNode::GetValue().

Referenced by AutoldentifyEPSG(), EPSGTreatsAsLatLong(), exportToOERM(), exportToPCI(), exportTo-
Proj4(), importFromEPSGA(), and morphToESRI().

13.70.3.26 const char x+ OGRSpatialReference::GetAxis (const char * pszTargetKey, int iAxis,
OGRAKxisOrientation x peOrientation) const

Fetch the orientation of one axis. Fetches the the request axis (iAxis - zero based) from the indicated
portion of the coordinate system (pszTargetKey) which should be either "GEOGCS" or "PROJCS".

No CPLError is issued on routine failures (such as not finding the AXIS).

This method is equivalent to the C function OSRGetAxis() (p. 2?).

Parameters:

pszlargetKey the coordinate system part to query ("PROJCS" or "GEOGCS").
iAxis the axis to query (O for first, 1 for second).

peOrientation location into which to place the fetch orientation, may be NULL.

Returns:

the name of the axis or NULL on failure.

References OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OGR_-
SRSNode::GetValue().

13.70.3.27 const char x* OGRSpatialReference::GetExtension (const char x pszTargetKey, const
char x pszName, const char x pszDefault = NULL) const

Fetch extension value. Fetch the value of the named EXTENSION item for the identified target node.

Parameters:
pszlargetKey the name or path to the parent node of the EXTENSION.
pszName the name of the extension being fetched.

pszDefault the value to return if the extension is not found.

13.70 OGRSpatialReference Class Reference 321

Returns:
node value if successful or pszDefault on failure.
References OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OGR_-
SRSNode::GetValue().
Referenced by exportToProj4().

13.70.3.28 double OGRSpatialReference::GetInvFlattening (OGRErr * pnErr = NULL) const

Get spheroid inverse flattening. This method does the same thing as the C function OSRGetInvFlatten-
ing() (p. ??).
Parameters:

pnErr if non-NULL set to OGRERR_FAILURE if no inverse flattening can be found.

Returns:

inverse flattening, or SRS_WGS84_INVFLATTENING if it can’t be found.
References CPLAtof(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(),
and OGR_SRSNode::GetValue().

Referenced by exportToPanorama(), exportToPCI(), exportToProj4(), exportToUSGS(), GetSemiMinor(),
and morphFromESRI().

13.70.3.29 double OGRSpatialReference::GetLinearUnits (char xx ppszName = NULL) const

Fetch linear projection units. If no units are available, a value of "Meters" and 1.0 will be assumed. This
method only checks directly under the PROJCS, GEOCCS or LOCAL_CS node for units.

This method does the same thing as the C function OSRGetLinearUnits() (p. ??)/

Parameters:

ppszName a pointer to be updated with the pointer to the units name. The returned value remains
internal to the OGRSpatialReference (p.??) and shouldn’t be freed, or modified. It may be
invalidated on the next OGRSpatialReference (p. ??) call.

Returns:

the value to multiply by linear distances to transform them to meters.

References GetTargetLinearUnits().

Referenced by exportToERM(), exportToPCI(), exportToProj4(), importFromESRI(), importFromProj4(),
IsSame(), morphToESRI(), SetLinearUnitsAndUpdateParameters(), and SetStatePlane().

13.70.3.30 double OGRSpatialReference::GetNormProjParm (const char x pszName, double
dfDefaultValue = 0.0, OGRETrr * pnErr = NULL) const

Fetch a normalized projection parameter value. This method is the same as GetProjParm() (p. ??) except
that the value of the parameter is "normalized" into degrees or meters depending on whether it is linear or
angular.

This method is the same as the C function OSRGetNormProjParm() (p. ??).

322 Class Documentation

Parameters:

pszName the name of the parameter to fetch, from the set of SRS_PP codes in ogr_srs_api.h (p. ??).
dfDefaultValue the value to return if this parameter doesn’t exist.

pnErr place to put error code on failure. Ignored if NULL.

Returns:

value of parameter.

References GetProjParm().

Referenced by exportToPanorama(), exportToPCI(), exportToProj4(), exportToUSGS(), GetUTMZone(),
morphToESRI(), and SetStatePlane().

13.70.3.31 double OGRSpatialReference::GetPrimeMeridian (char x* ppszName = NULL) const

Fetch prime meridian info. Returns the offset of the prime meridian from greenwich in degrees, and the
prime meridian name (if requested). If no PRIMEM value exists in the coordinate system definition a value
of "Greenwich" and an offset of 0.0 is assumed.

If the prime meridian name is returned, the pointer is to an internal copy of the name. It should not be
freed, altered or depended on after the next OGR call.

This method is the same as the C function OSRGetPrimeMeridian() (p. ??).

Parameters:

ppszName return location for prime meridian name. If NULL, name is not returned.

Returns:

the offset to the GEOGCS prime meridian from greenwich in decimal degrees.

References CPLAtof(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(),
and OGR_SRSNode::GetValue().

Referenced by morphFromESRI().

13.70.3.32 double OGRSpatialReference::GetProjParm (const char x pszName, double
dfDefaultValue = 0.0, OGRETrr * pnErr = NULL) const

Fetch a projection parameter value. NOTE: This code should be modified to translate non degree angles
into degrees based on the GEOGCS unit. This has not yet been done.
This method is the same as the C function OSRGetProjParm() (p. 2?).

Parameters:

pszName the name of the parameter to fetch, from the set of SRS_PP codes in ogr_srs_api.h (p. ??).
dfDefaultValue the value to return if this parameter doesn’t exist.

pnErr place to put error code on failure. Ignored if NULL.

Returns:

value of parameter.

13.70 OGRSpatialReference Class Reference 323

References CPLAtof(), FindProjParm(), GetAttrNode(), OGR_SRSNode::GetChild(), and OGR_-
SRSNode::GetValue().

Referenced by GetNormProjParm(), GetUTMZone(), importFromProj4(), IsSame(), morphFromESRI(),
morphToESRI(), and SetLinearUnitsAndUpdateParameters().

13.70.3.33 int OGRSpatialReference::GetReferenceCount () const [inline]

Fetch current reference count.
Returns:

the current reference count.

13.70.3.34 double OGRSpatialReference::GetSemiMajor (OGRErr *« pnErr = NULL) const

Get spheroid semi major axis. This method does the same thing as the C function OSRGetSemiMajor()
(P-??).
Parameters:

pnErr if non-NULL set to OGRERR_FAILURE if semi major axis can be found.

Returns:

semi-major axis, or SRS_WGS84_SEMIMAJOR if it can’t be found.
References CPLAtof(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(),
and OGR_SRSNode::GetValue().

Referenced by exportToPanorama(), exportToPCI(), exportToProj4(), exportToUSGS(), GetSemiMinor(),
and morphFromESRI().

13.70.3.35 double OGRSpatialReference::GetSemiMinor (OGRErr * pnErr = NULL) const

Get spheroid semi minor axis. This method does the same thing as the C function OSRGetSemiMinor()
(P-??).

Parameters:

pnErr if non-NULL set to OGRERR_FAILURE if semi minor axis can be found.

Returns:

semi-minor axis, or WGS84 semi minor if it can’t be found.
References GetlnvFlattening(), and GetSemiMajor().

Referenced by exportToProj4().

13.70.3.36 double OGRSpatialReference::GetTargetLinearUnits (const char * pszTargetKey, char
x* ppszName = NULL) const

Fetch linear units for target. If no units are available, a value of "Meters" and 1.0 will be assumed.

This method does the same thing as the C function OSRGetTargetLinearUnits() (p. ??)/

324 Class Documentation

Parameters:

pszlargetKey the key to look on. ie. "PROJCS" or "VERT_CS".

ppszName a pointer to be updated with the pointer to the units name. The returned value remains
internal to the OGRSpatialReference (p.??) and shouldn’t be freed, or modified. It may be
invalidated on the next OGRSpatialReference (p. ??) call.

Returns:

the value to multiply by linear distances to transform them to meters.

Since:
OGR 1.9.0
References CPLAtof(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(),
OGR_SRSNode::GetValue(), and IsVertical().
Referenced by GetLinearUnits().

13.70.3.37 OGRErr OGRSpatialReference::GetTOWGS84 (double * padfCoeff, int nCoeffCount
= 7) const

Fetch TOWGSS84 parameters, if available.

Parameters:
padfCoeff array into which up to 7 coefficients are placed.
nCoeffCount size of padfCoeff - defaults to 7.

Returns:

OGRERR_NONE on success, or OGRERR_FAILURE if there is no TOWGS84 node available.
References CPLAtof(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(),
and OGR_SRSNode::GetValue().

Referenced by exportToPCI(), and IsSameGeogCS().

13.70.3.38 int OGRSpatialReference::GetUTMZone (int * pbNorth = NULL) const

Get utm zone information. This is the same as the C function OSRGetUTMZone() (p. ??).

In SWIG bindings (Python, Java, etc) the GetUTMZone() (p. ??) method returns a zone which is negative
in the southern hemisphere instead of having the pbNorth flag used in the C and C++ interface.
Parameters:

pbNorth pointer to in to set to TRUE if northern hemisphere, or FALSE if southern.

Returns:

UTM zone number or zero if this isn’t a UTM definition.

References GetAttrValue(), GetNormProjParm(), and GetProjParm().

Referenced by AutoldentifyEPSG(), exportToERMY(), exportToPanorama(), exportToPCI(), exportTo-
Proj4(), exportToUSGS(), and morphToESRI().

13.70 OGRSpatialReference Class Reference 325

13.70.3.39 OGRErr OGRSpatialReference::importFromDict (const char x pszDictFile, const char
x pszCode)
Read SRS from WKT dictionary.

This method will attempt to find the indicated coordinate system identity in the indicated dictionary file. If
found, the WKT representation is imported and used to initialize this OGRSpatialReference (p. ??).

More complete information on the format of the dictionary files can be found in the epsg.wkt file in the
GDAL data tree. The dictionary files are searched for in the "GDAL" domain using CPLFindFile(). Nor-
mally this results in searching /usr/local/share/gdal or somewhere similar.

This method is the same as the C function OSRImportFromDict().

Parameters:

pszDictFile the name of the dictionary file to load.
pszCode the code to lookup in the dictionary.

Returns:

OGRERR_NONE on success, or OGRERR_SRS_UNSUPPORTED if the code isn’t found, and
OGRERR_SRS_FAILURE if something more dramatic goes wrong.

References importFromWkt().
Referenced by exportTOERM(), importFromEPSGA (), importFromERM(), and SetFromUserInput().

13.70.3.40 OGRErr OGRSpatialReference::importFromEPSG (int nCode)

Initialize SRS based on EPSG GCS or PCS code. This method will initialize the spatial reference based
on the passed in EPSG GCS or PCS code. The coordinate system definitions are normally read from the
EPSG derived support files such as pcs.csv, gcs.csv, pcs.override.csv, ges.override.csv and falling back to
search for a PROJ.4 epsg init file or a definition in epsg.wkt.

These support files are normally searched for in /ust/local/share/gdal or in the directory identified by the
GDAL_DATA configuration option. See CPLFindFile() for details.

This method is relatively expensive, and generally involves quite a bit of text file scanning. Reasonable
efforts should be made to avoid calling it many times for the same coordinate system.

This method is similar to importFromEPSGA() (p. ??) except that EPSG preferred axis ordering will
xnot+ be applied for geographic coordinate systems. EPSG normally defines geographic coordinate sys-
tems to use lat/long contrary to typical GIS use).

This method is the same as the C function OSRImportFromEPSG() (p. ??).

Parameters:

nCode a GCS or PCS code from the horizontal coordinate system table.

Returns:

OGRERR_NONE on success, or an error code on failure.

References GetAttrNode(), importFromEPSGA(), and OGR_SRSNode::StripNodes().

Referenced by importFromERM(), importFromESRI(), importFromOzi(), importFromPanorama(), im-
portFromPCI(), importFromProj4(), morphFromESRI(), SetFromUserlnput(), SetStatePlane(), and
SetWellKnownGeogCS().

326 Class Documentation

13.70.3.41 OGRErr OGRSpatialReference::importFromEPSGA (int nCode)

Initialize SRS based on EPSG GCS or PCS code. This method will initialize the spatial reference based on
the passed in EPSG GCS or PCS code.

This method is similar to importFromEPSG() (p. ??) except that EPSG preferred axis ordering *willx be
applied for geographic coordinate systems. EPSG normally defines geographic coordinate systems to use
lat/long contrary to typical GIS use). See OGRSpatialReference::importFromEPSG() (p. ??) for more
details on operation of this method.

This method is the same as the C function OSRImportFromEPSGA() (p. ??).

Parameters:

nCode a GCS or PCS code from the horizontal coordinate system table.

Returns:

OGRERR_NONE on success, or an error code on failure.

References FixupOrdering(), GetAuthorityName(), importFromDict(), importFromProj4(), IsGeo-
graphic(), IsProjected(), and SetAuthority().

Referenced by importFromEPSG(), SetFromUserInput(), and SetWellKnownGeogCS().

13.70.3.42 OGRErr OGRSpatialReference::importFromERM (const char * pszProj, const char x
pszDatum, const char x pszUnits)

Create OGR WKT from ERMapper projection definitions.

Generates an OGRSpatialReference (p. ??) definition from an ERMapper datum and projection name.
Based on the ecw_cs.wkt dictionary file from gdal/data.

Parameters:
pszProj the projection name, such as "NUTM11" or "GEOGRAPHIC".
pszDatum the datum name, such as "NADS83".
pszUnits the linear units "FEET" or "METERS".

Returns:

OGRERR_NONE on success or OGRERR_UNSUPPORTED_SRS if not found.

References Clear(), CopyGeogCSFrom(), importFromDict(), importFromEPSG(), IsLocal(), and SetLin-
earUnits().

13.70.3.43 OGRErr OGRSpatialReference::importFromESRI (char x papszPrj)

Import coordinate system from ESRI .prj format(s). This function will read the text loaded from an ESRI
.prj file, and translate it into an OGRSpatialReference (p. ??) definition. This should support many (but
by no means all) old style (Arc/Info 7.x) .prj files, as well as the newer pseudo-OGC WKT .prj files.
Note that new style .prj files are in OGC WKT format, but require some manipulation to correct datum
names, and units on some projection parameters. This is addressed within importFromESRI() (p. ??) by
an automatical call to morphFromESRI() (p. ??).

13.70 OGRSpatialReference Class Reference 327

Currently only GEOGRAPHIC, UTM, STATEPLANE, GREATBRITIAN_GRID, ALBERS,
EQUIDISTANT_CONIC, TRANSVERSE (mercator), POLAR, MERCATOR and POLYCONIC
projections are supported from old style files.

At this time there is no equivelent exportTOESRI() method. Writing old style .prj files is not supported by
OGRSpatialReference (p. ??). However the morphToESRI() (p. ??) and exportToWkt() (p. ??) methods
can be used to generate output suitable to write to new style (Arc 8) .prj files.

This function is the equilvelent of the C function OSRImportFromESRI() (p. ??).

Parameters:

papszPrj NULL terminated list of strings containing the definition.

Returns:

OGRERR_NONE on success or an error code in case of failure.

References CopyGeogCSFrom(), OGR_SRSNode::DestroyChild(), GetAttrNode(), GetLinearUnits(), im-
portFromEPSG(), importFromWkt(), IsLocal(), IsProjected(), morphFromESRI(), SetACEA(), SetEC(),
SetLAEA(), SetLCC(), SetLinearUnitsAndUpdateParameters(), SetLocalCS(), SetMercator(), SetPoly-
conic(), SetPS(), SetStatePlane(), SetTM(), SetUTM(), and SetWellKnownGeogCS().

13.70.3.44 OGRErr OGRSpatialReference::importFromMICoordSys (const char * pszCoordSys)
Import Mapinfo style CoordSys definition. The OGRSpatialReference (p.??) is initialized from the
passed Mapinfo style CoordSys definition string.

This method is the equivalent of the C function OSRImportFromMICoordSys() (p. ??).

Parameters:

pszCoordSys Mapinfo style CoordSys definition string.

Returns:

OGRERR_NONE on success, OGRERR_FAILURE on failure, OGRERR_UNSUPPORTED_-
OPERATION if MITAB library was not linked in.

13.70.3.45 OGRErr OGRSpatialReference::importFromOzi (const char x pszDatum, const char x
pszProj, const char x pszProjParms)

Import coordinate system from OziExplorer projection definition.

This method will import projection definition in style, used by OziExplorer software.

This function is the equivalent of the C function OSRImportFromOzi().

Parameters:

pszDatum Datum string. This is a fifth string in the OziExplorer .MAP file.

pszProj Projection string. Search for line starting with "Map Projection" name in the OziExplorer
.MAP file and supply it as a whole in this parameter.

pszProjParms String containing projection parameters. Search for "Projection Setup" name in the
OziExplorer .MAP file and supply it as a whole in this parameter.

328 Class Documentation

Returns:

OGRERR_NONE on success or an error code in case of failure.

References Clear(), CopyGeogCSFrom(), CPLAtof(), FixupOrdering(), importFromEPSG(), IsLocal(),
IsProjected(), SetACEA(), SetLCC(), SetLinearUnits(), SetLocalCS(), SetMercator(), SetSinusoidal(),
SetTM(), and SetWellKnownGeogCS().

13.70.3.46 OGRErr OGRSpatialReference::importFromPanorama (long iProjSys, long iDatum,
long iEllips, double x padfPrjParams)

Import coordinate system from "Panorama" GIS projection definition.
This method will import projection definition in style, used by "Panorama" GIS.

This function is the equivalent of the C function OSRImportFromPanorama).

Parameters:

iProjSys Input projection system code, used in GIS "Panorama".

Supported Projections

1: Gauss—-Kruger (Transverse Mercator)
2: Lambert Conformal Conic 2SP

5: Stereographic

6: Azimuthal Equidistant (Postel)

8: Mercator

10: Polyconic

13: Polar Stereographic

15: Gnomonic

17: Universal Transverse Mercator (UTM)
18: Wagner I (Kavraisky VI)

19: Mollweide

20: Equidistant Conic

24: Lambert Azimuthal Equal Area

27: Equirectangular

28: Cylindrical Equal Area (Lambert)
29: International Map of the World Polyconic

Parameters:

iDatum Input coordinate system.

Supported Datums
1: Pulkovo, 1942
2: WGS, 1984
3: OSGB 1936 (British National Grid)
9: Pulkovo, 1995

Parameters:

iEllips Input spheroid.

13.70 OGRSpatialReference Class Reference 329

Supported Spheroids

: Krassovsky, 1940

: WGS, 1972

: International, 1924 (Hayford, 1909)
: Clarke, 1880

: Clarke, 1866 (NAD1927)

: Everest, 1830

: Bessel, 1841

: Airy, 1830

: WGS, 1984 (GPS)

O 00 J o U WN

Parameters:

padfPrjParams Array of 8 coordinate system parameters:

Latitude of the first standard parallel (radians)
Latitude of the second standard parallel (radians)
Latitude of center of projection (radians)
Longitude of center of projection (radians)
Scaling factor

False Easting

False Northing

Zone number

~N o 0w N O

Particular projection uses different parameters, unused ones may be set to zero. If NULL supplied instead
of array pointer default values will be used (i.e., zeroes).

Returns:

OGRERR_NONE on success or an error code in case of failure.

References Clear(), CopyGeogCSFrom(), FixupOrdering(), importFromEPSG(), IsLocal(), IsProjected(),
SetAE(), SetAuthority(), SetCEA(), SetEC(), SetEquirectangular(), SetGeogCS(), SetGnomonic(), Setl-
WMPolyconic(), SetLAEA(), SetLCC(), SetLinearUnits(), SetLocalCS(), SetMercator(), SetMollweide(),
SetPolyconic(), SetPS(), SetStereographic(), SetTM(), SetUTM(), SetWagner(), and SetWellKnown-
GeogCS().

13.70.3.47 OGRErr OGRSpatialReference::importFromPCI (const char * pszProj, const char *
pszUnits = NULL, double * padfPrjParams = NULL)

Import coordinate system from PCI projection definition. PCI software uses 16-character string to specify
coordinate system and datum/ellipsoid. You should supply at least this string to the importFromPCI()
(p- ??) function.

This function is the equivalent of the C function OSRImportFromPCI() (p. ??).

Parameters:

pszProj NULL terminated string containing the definition. Looks like "pppppppppppp Ennn" or
"pprPrPPPPPPP Dnnn", where "pppppppppppp’ is a projection code, "Ennn" is an ellipsoid code,
"Dnnn" --- a datum code.

pszUnits Grid units code ("DEGREE" or "METRE"). If NULL "METRE" will be used.

330 Class Documentation

padfPrjParams Array of 17 coordinate system parameters:

[0] Spheroid semi major axis [1] Spheroid semi minor axis [2] Reference Longitude [3] Reference Latitude
[4] First Standard Parallel [5] Second Standard Parallel [6] False Easting [7] False Northing [8] Scale
Factor [9] Height above sphere surface [10] Longitude of 1st point on center line [11] Latitude of 1st point
on center line [12] Longitude of 2nd point on center line [13] Latitude of 2nd point on center line [14]
Azimuth east of north for center line [15] Landsat satellite number [16] Landsat path number

Particular projection uses different parameters, unused ones may be set to zero. If NULL suppliet instead
of array pointer default values will be used (i.e., zeroes).

Returns:

OGRERR_NONE on success or an error code in case of failure.

References Clear(), CopyGeogCSFrom(), CPLAtof(), FixupOrdering(), importFromEPSG(), IsGeo-
graphic(), IsLocal(), IsProjected(), SetACEA(), SetAE(), SetAngularUnits(), SetAuthority(), SetCS(),
SetEC(), SetEquirectangular2(), SetGeogCS(), SetGnomonic(), SetHOM(), SetHOM2PNO(), Set-
LAEA(), SetLCC(), SetLCCISP(), SetLinearUnits(), SetLinearUnitsAndUpdateParameters(), SetLo-
calCS(), SetMC(), SetMercator(), SetOrthographic(), SetOS(), SetPolyconic(), SetPS(), SetRobin-
son(), SetSinusoidal(), SetStatePlane(), SetStereographic(), SetTM(), SetTOWGS84(), SetUTM(), and
SetVDG().

13.70.3.48 OGRErr OGRSpatialReference::importFromProj4 (const char * pszProj4)

Import PROJ .4 coordinate string. The OGRSpatialReference (p. ??) is initialized from the passed PROJ.4
style coordinate system string. In addition to many +proj formulations which have OGC equivelents, it is
also possible to import "+init=epsg:n" style definitions. These are passed to importFromEPSG() (p. ??).
Other init strings (such as the state plane zones) are not currently supported.

Example: pszProj4 = "+proj=utm +zone=11 +datum=WGS84"

Some parameters, such as grids, recognised by PROJ.4 may not be well understood and translated into
the OGRSpatialReference (p. ??) model. It is possible to add the +wktext parameter which is a special
keyword that OGR recognises as meaning "embed the entire PROJ.4 string in the WKT and use it literally
when converting back to PROJ.4 format".

For example: "+proj=nzmg +lat_0=-41 +lon_0=173 +x_0=2510000 +y_0=6023150 +ellps=intl +units=m
+nadgrids=nzgd2kgrid0005.gsb +wktext"

will be translated as :

PROJCS ["unnamed",
GEOGCS["International 1909 (Hayford)",

DATUM["unknown",

SPHEROID(["int1l",6378388,29711,

PRIMEM["Greenwich",0],

UNIT["degree",0.017453292519943311,
PROJECTION|["New_Zealand_Map_Grid"],
PARAMETER(["latitude_of_origin",-41],
PARAMETER["central_meridian",173],
PARAMETER["false_easting",25100007,
PARAMETER(["false_northing",6023150],

UNIT["Meter",11],
EXTENSION["PROJ4", "+proj=nzmg +lat_0=-41 +lon_0=173 +x_0=2510000
+y_0=6023150 +ellps=intl +units=m +nadgrids=nzgd2kgrid0005.gsb +w
ktext"]]

This method is the equivalent of the C function OSRImportFromProj4() (p.??).

13.70 OGRSpatialReference Class Reference 331

Parameters:

pszProj4 the PROJ 4 style string.

Returns:

OGRERR_NONE on success or OGRERR_CORRUPT_DATA on failure.

References OGR_SRSNode::AddChild(), Clear(), OGR_SRSNode::Clone(), CopyGeogCS-
From(), CPLAtof(), CPLAtofM(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_-
SRSNode::GetChildCount(), GetLinearUnits(), OGR_SRSNode::GetNode(), GetProjParm(), OGR_-
SRSNode::GetValue(), importFromEPSG(), IsGeocentric(), IsLocal(), IsProjected(), SetACEA(),
SetAE(), SetBonne(), SetCEA(), SetCS(), SetEC(), SetEckert(), SetEquirectangular(), SetEquirect-
angular2(), SetExtension(), SetGaussSchreiberTMercator(), SetGeocCS(), SetGeogCS(), SetGEOS(),
SetGH(), SetGnomonic(), SetGS(), SetHOM(), SetIGH(), SetfWMPolyconic(), SetKrovak(), SetLAEA(),
SetLCC(), SetLCCI1SP(), SetLinearUnits(), SetMC(), SetMercator(), SetMollweide(), SetNode(), Set-
NormProjParm(), SetNZMG(), SetOrthographic(), SetOS(), SetPolyconic(), SetPS(), SetRobinson(),
SetSinusoidal(), SetStereographic(), SetTM(), SetTMSO(), SetTOWGS84(), SetTPED(), SetUTMYJ(),
SetVDG(), SetWagner(), and SetWellKnownGeogCS().

Referenced by importFromEPSGA(), and SetFromUserInput().

13.70.3.49 OGRErr OGRSpatialReference::importFromUrl (const char x pszUrl)
Set spatial reference from a URL. This method will download the spatial reference at a given URL and
feed it into SetFromUserInput for you.

This method does the same thing as the OSRImportFromUrl() (p. ??) function.

Parameters:

pszUrl text definition to try to deduce SRS from.

Returns:
OGRERR_NONE on success, or an error code with the curl error message if it is unable to dowload
data.
References CPLHTTPResult::nDatal.en, CPLHTTPResult::nStatus, CPLHTTPResult::pabyData, CPL-
HTTPResult::pszErrBuf, and SetFromUserInput().
Referenced by SetFromUserInput().

13.70.3.50 OGRErr OGRSpatialReference::importFromURN (const char x pszURN)

Initialize from OGC URN. Initializes this spatial reference from a coordinate system defined by an OGC
URN prefixed with "urn:ogc:def:crs:" per recommendation paper 06-023r1. Currently EPSG and OGC
authority values are supported, including OGC auto codes, but not including CRS1 or CRS88 (NAVDSS).

This method is also support through SetFromUserInput() (p. ??) which can normally be used for URNs.

Parameters:

pszURN the urn string.

Returns:

OGRERR_NONE on success or an error code.

332 Class Documentation

References OGR_SRSNode::AddChild(), Clear(), OGR_SRSNode::Clone(), OGR_SRSNode::GetChild(),
OGR_SRSNode::GetValue(), and SetNode().

Referenced by SetFromUserInput().

13.70.3.51 OGRErr OGRSpatialReference::importFromUSGS (long iProjSys, long iZone, double
« padfPrjParams, long iDatum, int bAnglesInPackedDMSFormat = TRUE)

Import coordinate system from USGS projection definition. This method will import projection definition
in style, used by USGS GCTP software. GCTP operates on angles in packed DMS format (see CPLDec-
ToPackedDMS() (p. ??) function for details), so all angle values (latitudes, longitudes, azimuths, etc.)
specified in the padfPrjParams array should be in the packed DMS format, unless bAnglesInPackedDMS-
Format is set to FALSE.

This function is the equivalent of the C function OSRImportFromUSGS() (p.??). Note that the bAn-
glesInPackedDMSFormat parameter is only present in the C++ method. The C function assumes bAn-
glesInPackedFormat = TRUE.

Parameters:

iProjSys Input projection system code, used in GCTP.

iZone Input zone for UTM and State Plane projection systems. For Southern Hemisphere UTM use a
negative zone code. iZone ignored for all other projections.

padfPrjParams Array of 15 coordinate system parameters. These parameters differs for different
projections.

Projection Transformation Package Projection Parameters

| 0 | 1 | 2 | 3 | 4 | 5 6 | 7

0 Geographic | | | | | | | |

1 UTM |Lon/Z |Lat/Z | | | | | |

2 State Plane \ | \ \ | \ | |
3 Albers Equal Area |SMajor|SMinor |STDPR1 |STDPR2 |CentMer |OriginLat |FE|FN
4 Lambert Conformal C | SMajor |SMinor | STDPR1 |STDPR2 |CentMer |OriginLat |FE|FN
5 Mercator | SMajor|SMinor | | |CentMer | TrueScale |FE |FN
6 Polar Stereographic | SMajor|SMinor | | |LongPol | TrueScale|FE|FN
7 Polyconic | SMajor |SMinor | | |CentMer |OriginLat |FE|FN
8 Equid. Conic A | SMajor|SMinor | STDPAR | |CentMer|OriginLat |FE|FN
Equid. Conic B | SMajor |SMinor | STDPR1 |STDPR2 |CentMer |OriginLat |FE|FN
9 Transverse Mercator |SMajor|SMinor|Factor]| |CentMer |OriginLat |FE|FN
10 Stereographic | Sphere| | | |CentLon|CenterLat |FE|FN
11 Lambert Azimuthal | Sphere| | | |CentLon|CenterLat |FE|FN
12 Azimuthal | Sphere| | | |CentLon|CenterLat |FE|FN
13 Gnomonic | Sphere| | | |CentLon|CenterLat |FE|FN
14 Orthographic | Sphere| | | |CentLon|CenterLat |FE|FN
15 Gen. Vert. Near Per |Sphere] |Height | |CentLon|CenterLat |FE|FN
16 Sinusoidal | Sphere | | | | CentMer | |FE|FN
17 Equirectangular | Sphere| | | |CentMer | TrueScale |FE|FN
18 Miller Cylindrical | Sphere| | | | CentMer | |FE|FN
19 Van der Grinten | Sphere | | | |CentMer|OriginLat |FE|FN

20 Hotin Oblique Merc A |SMajor|SMinor|Factor]| | |OriginLat |FE|FN

13.70 OGRSpatialReference Class Reference

333

Hotin Oblique Merc B |SMajor|SMinor|Factor|AziAng|AzmthPt |OriginLat |FE|FN

|FE|FN
|FE|FN
|FE|FN
|FE|FN
| |

|FE|FN
[

|FE|FN
|FE|FN
|FE|FN

Shapem|Shapen|CentLon|CenterLat |FE|FN

Robinson | Sphere| | | | CentMer |
Space Oblique Merc A |SMajor|SMinor| | IncAng|AscLong|
Space Oblique Merc B |SMajor|SMinor|Satnum|Path | |
Alaska Conformal | SMajor|SMinor | \ | \
Interrupted Goode | Sphere | \ \ | \
Mollweide | Sphere| | | | CentMer |
Interrupt Mollweide |Sphere| \ \ |
Hammer | Sphere| | | | CentMer |
Wagner IV | Sphere| | | | CentMer |
Wagner VII | Sphere| | | |CentMer|
Oblated Equal Area | Sphere| |
| Array Element |
Code & Projection Id [-—————————————————————--———
| 8 | 9 | 10 | 11 | 12 |
0 Geographic | \ | | |
1 UTM | \ | | | \
2 State Plane | | | | |
3 Albers Equal Area | \ | | | \
4 Lambert Conformal C | | | | | \
5 Mercator | \ | | | \
6 Polar Stereographic | \ | | | \
7 Polyconic I \ | | | \
8 Equid. Conic A |zero | | | |
Equid. Conic B |[one | | | |
9 Transverse Mercator | \ | | |
10 Stereographic | \ | | |
11 Lambert Azimuthal | | | | | \
12 Azimuthal | \ | | | \
13 Gnomonic | \ | | |
14 Orthographic | \ | | |
15 Gen. Vert. Near Per | | | | |
16 Sinusoidal | \ | | |
17 Equirectangular | \ | | |
18 Miller Cylindrical | \ | | | \
19 Van der Grinten | \ | | | \
20 Hotin Oblique Merc A |Longl|Latl|Long2|Lat2]|zero]
Hotin Oblique Merc B | \ | | |one |
21 Robinson | \ | | |
22 Space Oblique Merc A |PSRev|LRat |PFlag| | zero|
Space Obligque Merc B | \ | | |one |
23 Alaska Conformal | \ | | | \
24 Interrupted Goode | \ | | | \
25 Mollweide | \ | | |
26 Interrupt Mollweide | \ | | |
27 Hammer | \ | | |
28 Wagner IV | \ | | |
29 Wagner VII | \ | | |
30 Oblated Equal Area |Angle| | | |
where

Lon/%Z Longitude of any point in the UTM zone or zero.

If zero,

334 Class Documentation
a zone code must be specified.

Lat/z Latitude of any point in the UTM zone or zero. If zero, a
zone code must be specified.

SMajor Semi-major axis of ellipsoid. If zero, Clarke 1866 in meters
is assumed.

SMinor Eccentricity squared of the ellipsoid if less than zero,
if zero, a spherical form is assumed, or if greater than
zero, the semi-minor axis of ellipsoid.

Sphere Radius of reference sphere. If zero, 6370997 meters is used.

STDPAR Latitude of the standard parallel

STDPR1 Latitude of the first standard parallel

STDPR2 Latitude of the second standard parallel

CentMer Longitude of the central meridian

OriginLat Latitude of the projection origin

FE False easting in the same units as the semi-major axis

FN False northing in the same units as the semi-major axis

TrueScale Latitude of true scale

LongPol Longitude down below pole of map

Factor Scale factor at central meridian (Transverse Mercator) or
center of projection (Hotine Oblique Mercator)

CentLon Longitude of center of projection

CenterLat Latitude of center of projection

Height Height of perspective point

Longl Longitude of first point on center line (Hotine Oblique
Mercator, format A)

Long2 Longitude of second point on center line (Hotine Oblique
Mercator, format A)

Latl Latitude of first point on center line (Hotine Oblique
Mercator, format A)

Lat2 Latitude of second point on center line (Hotine Oblique
Mercator, format A)

AziAng Azimuth angle east of north of center line (Hotine Oblique
Mercator, format B)

AzmthPt Longitude of point on central meridian where azimuth occurs
(Hotine Oblique Mercator, format B)

IncAng Inclination of orbit at ascending node, counter-clockwise
from equator (SOM, format A)

AscLong Longitude of ascending orbit at equator (SOM, format A)

PSRev Period of satellite revolution in minutes (SOM, format A)

LRat Landsat ratio to compensate for confusion at northern end
of orbit (SOM, format A —- use 0.5201613)

PFlag End of path flag for Landsat: 0 = start of path,

1 = end of path (SOM, format A)

Satnum Landsat Satellite Number (SOM, format B)

Path Landsat Path Number (Use WRS-1 for Landsat 1, 2 and 3 and
WRS—-2 for Landsat 4, 5 and 6.) (SOM, format B)

Shapem Oblated Equal Area oval shape parameter m

Shapen Oblated Equal Area oval shape parameter n

Angle Oblated Equal Area oval rotation angle

Array elements 13 and 14 are set to zero. All array elements with blank
fields are set to zero too.

Parameters:

iDatum Input spheroid.

If the datum code is negative, the first two values in the parameter array (parm) are used to define the values

13.70 OGRSpatialReference Class Reference 335

as follows:

* If padfPrjParams[0] is a non-zero value and padfPrjParams[1] is greater than one, the semimajor axis
is set to padfPrjParams[0] and the semiminor axis is set to padfPrjParams[1].

e If padfPrjParams[0] is nonzero and padfPrjParams[1] is greater than zero but less than or equal to
one, the semimajor axis is set to padfPrjParams[0] and the semiminor axis is computed from the
eccentricity squared value padfPrjParams[1]:

semiminor = sqrt(1.0 - ES) * semimajor
where
ES = eccentricity squared

* If padfPrjParams[0] is nonzero and padfPrjParams[1] is equal to zero, the semimajor axis and
semiminor axis are set to padfPrjParams[0].

o If padfPrjParams[0] equals zero and padfPrjParams[1] is greater than zero, the default Clarke 1866
is used to assign values to the semimajor axis and semiminor axis.

o If padfPrjParams[0] and padfPrjParams[1] equals zero, the semimajor axis is set to 6370997.0 and

the semiminor axis is set to zero.

If a datum code is zero or greater, the semimajor and semiminor axis are defined by the datum code as
found in the following table:

Supported Datums
0: Clarke 1866 (default)
1: Clarke 1880
2: Bessel
3: International 1967
4: International 1909
5: WGS 72
6: Everest
7: WGS 66
8: GRS 1980/WGS 84
9: Airy
10: Modified Everest
11: Modified Airy
12: Walbeck
13: Southeast Asia
14: Australian National
15: Krassovsky
16: Hough
17: Mercury 1960
18: Modified Mercury 1968
19: Sphere of Radius 6370997 meters
Parameters:

bAnglesInPackedDMSFormat TRUE if the angle values specified in the padfPrjParams array should
be in the packed DMS format

Returns:

OGRERR_NONE on success or an error code in case of failure.

336 Class Documentation

References FixupOrdering(), IsLocal(), IsProjected(), SetACEA(), SetAE(), SetAuthority(), SetEC(), SetE-
quirectangular2(), SetGeogCS(), SetGnomonic(), SetHOM(), SetHOM2PNO(), SetLAEA(), SetLCC(),
SetLinearUnits(), SetLocalCS(), SetMC(), SetMercator(), SetMollweide(), SetOrthographic(), SetPoly-
conic(), SetPS(), SetRobinson(), SetSinusoidal(), SetStatePlane(), SetStereographic(), SetTM(), Se-
tUTM(), SetVDG(), SetWagner(), and SetWellKnownGeogCS().

13.70.3.52 OGRErr OGRSpatialReference::importFromWkt (char *x ppszInput)

Import from WKT string. This method will wipe the existing SRS definition, and reassign it based on
the contents of the passed WKT string. Only as much of the input string as needed to construct this SRS
is consumed from the input string, and the input string pointer is then updated to point to the remaining
(unused) input.

This method is the same as the C function OSRImportFromWkt() (p. ??).

Parameters:

ppszInput Pointer to pointer to input. The pointer is updated to point to remaining unused input text.

Returns:

OGRERR_NONE if import succeeds, or OGRERR_CORRUPT_DATA if it fails for any reason.

References OGR_SRSNode:: AddChild(), Clear(), and OGR_SRSNode::importFromWkt().

Referenced by importFromDict(), importFromESRI(), OGRSpatialReference(), OSRNewSpatialRefer-
ence(), SetFromUserInput(), and SetWellKnownGeogCS().

13.70.3.53 OGRErr OGRSpatialReference::importFromWMSAUTO (const char * pszDefinition)

Initialize from WMSAUTO string. Note that the WMS 1.3 specification does not include the units code,
while apparently earlier specs do. We try to guess around this.

Parameters:

pszDefinition the WMSAUTO string

Returns:

OGRERR_NONE on success or an error code.

References Clear(), CPLAtof(), SetAuthority(), SetEquirectangular(), SetLinearUnits(), SetMollweide(),
SetOrthographic(), SetTM(), SetUTM(), and SetWellKnownGeogCS().

Referenced by SetFromUserInput().

13.70.3.54 OGRErr OGRSpatialReference::importFromXML (const char * pszZXML)

Import coordinate system from XML format (GML only currently). This method is the same as the C
function OSRImportFromXML() (p.??)

Parameters:

pszZXML XML string to import

13.70 OGRSpatialReference Class Reference 337

Returns:

OGRERR_NONE on success or OGRERR_CORRUPT_DATA on failure.

References Clear(), CPLXMLNode::psNext, and CPLXMLNode::pszValue.
Referenced by SetFromUserInput().

13.70.3.55 int OGRSpatialReference::IsCompound () const

Check if coordinate system is compound. This method is the same as the C function OSRIsCompound()
(P-??7).

Returns:

TRUE if this is rooted with a COMPD_CS node.

References OGR_SRSNode::GetValue().

13.70.3.56 int OGRSpatialReference::IsGeocentric () const

Check if geocentric coordinate system. This method is the same as the C function OSRIsGeocentric()
(P-??7).

Returns:

TRUE if this contains a GEOCCS node indicating a it is a geocentric coordinate system.

Since:

OGR 1.9.0

References OGR_SRSNode::GetValue().

Referenced by CloneGeogCS(), CopyGeogCSFrom(), exportToProj4(), importFromProj4(), and Set-
GeogCS().

13.70.3.57 int OGRSpatialReference::IsGeographic () const

Check if geographic coordinate system. This method is the same as the C function OSRIsGeographic()
(P-??7).

Returns:

TRUE if this spatial reference is geographic ... that is the root is a GEOGCS node.

References GetAttrNode(), and OGR_SRSNode::GetValue().

Referenced by AutoldentifyEPSG(), EPSGTreatsAsLatLong(), exportTOERM(), exportToProj4(), export-
ToXML(), importFromEPSGA(), importFromPCI(), SetCompoundCS(), SetVertCS(), and SetWellKnown-
GeogCS().

338 Class Documentation

13.70.3.58 int OGRSpatialReference::IsLocal () const

Check if local coordinate system. This method is the same as the C function OSRIsLocal() (p. ??).
Returns:

TRUE if this spatial reference is local ... that is the root is a LOCAL_CS node.

Referenced by exportToPanorama(), exportToPCI(), exportToUSGS(), importFromERM(), import-
FromESRI(), importFromOzi(), importFromPanorama(), importFromPCI(), importFromProj4(), import-
FromUSGS(), and IsSame().

13.70.3.59 int OGRSpatialReference::IsProjected () const

Check if projected coordinate system. This method is the same as the C function OSRIsProjected() (p. ??).
Returns:

TRUE if this contains a PROJCS node indicating a it is a projected coordinate system.

References GetAttrNode(), and OGR_SRSNode::GetValue().

Referenced by AutoldentifyEPSG(), exportToERM(), exportToXML(), importFromEPSGA(), import-
FromESRI(), importFromOzi(), importFromPanorama(), importFromPCI(), importFromProj4(), import-
FromUSGS(), IsSame(), SetCompoundCS(), and SetVertCS().

13.70.3.60 int OGRSpatialReference::IsSame (const OGRSpatialReference * poOtherSRS) const

Do these two spatial references describe the same system ?
Parameters:

poOtherSRS the SRS being compared to.
Returns:

TRUE if equivalent or FALSE otherwise.

References GetAttrNode(), GetAttrValue(), OGR_SRSNode::GetChild(), OGR_-
SRSNode::GetChildCount(), GetLinearUnits(), GetProjParm(), OGR_SRSNode::GetValue(), IsLocal(),
IsProjected(), IsSameGeogCS(), IsSameVertCS(), and IsVertical().

13.70.3.61 int OGRSpatialReference::IsSameGeogCS (const OGRSpatialReference « poOther)
const

Do the GeogCS’es match? This method is the same as the C function OSRIsSameGeogCS() (p. ??).
Parameters:

poOther the SRS being compared against.
Returns:

TRUE if they are the same or FALSE otherwise.

References CPLAtof(), GetAttrValue(), and GetTOWGS84().
Referenced by IsSame(), and morphFromESRI().

13.70 OGRSpatialReference Class Reference 339

13.70.3.62 int OGRSpatialReference::IsSameVertCS (const OGRSpatialReference * poOther)
const

Do the VertCS’es match? This method is the same as the C function OSRIsSameVertCS() (p. ??).

Parameters:

poOther the SRS being compared against.

Returns:

TRUE if they are the same or FALSE otherwise.

References CPLAtof(), and GetAttrValue().
Referenced by IsSame().

13.70.3.63 int OGRSpatialReference::IsVertical () const

Check if vertical coordinate system. This method is the same as the C function OSRIsVertical() (p. 2?).

Returns:

TRUE if this contains a VERT_CS node indicating a it is a vertical coordinate system.

Since:

OGR 1.8.0

References GetAttrNode(), and OGR_SRSNode::GetValue().
Referenced by GetTargetLinearUnits(), IsSame(), SetCompoundCS(), and SetTargetLinearUnits().

13.70.3.64 OGRErr OGRSpatialReference::morphFromESRI ()

Convert in place from ESRI WKT format. The value notes of this coordinate system are modified in various
manners to adhere more closely to the WKT standard. This mostly involves translating a variety of ESRI
names for projections, arguments and datums to "standard" names, as defined by Adam Gawne-Cain’s
reference translation of EPSG to WKT for the CT specification.

Starting with GDAL 1.9.0, missing parameters in TOWGS84, DATUM or GEOGCS nodes can be added
to the WKT, comparing existing WKT parameters to GDAL’s databases. Note that this optional procedure
is very conservative and should not introduce false information into the WKT defintion (altough caution
should be advised when activating it). Needs the Configuration Option GDAL_FIX_ESRI_WKT be set to
one of the following values (TOWGSS84 is recommended for proper datum shift calculations):

GDAL_FIX_ESRI_WKT values

340 Class Documentation

TOWGS84 Adds missing
TOWGS84 parameters
(necessary for datum
transformations),
based on named datum
and spheroid values.
DATUM Adds ESPG
AUTHORITY nodes
and sets SPHEROID
name to OGR spec.
GEOGCS Adds ESPG
AUTHORITY nodes
and sets GEOGCS,
DATUM and
SPHEROID names to
OGR spec. Effectively
replaces GEOGCS
node with the result of
importFromEPSG(n),
using EPSG code n
corresponding to the
existing GEOGCS.
Does not impact
PROIJCS values.

This does the same as the C function OSRMorphFromESRI() (p. ??).

Returns:

OGRERR_NONE unless something goes badly wrong.

References OGR_SRSNode::AddChild(), OGR_SRSNode::applyRemapper(), OGR_SRSNode::Clone(),
CloneGeogCS(), CopyGeogCSFrom(), OGR_SRSNode::DestroyChild(), OGR_SRSNode::FindChild(),
FixupOrdering(), GetAttrNode(), GetAttrValue(), OGR_SRSNode::GetChild(), GetInvFlatten-
ing(), GetPrimeMeridian(), GetProjParm(), GetSemiMajor(), OGR_SRSNode::GetValue(), import-
FromEPSG(), OGR_SRSNode::InsertChild(), IsSameGeogCS(), SetNode(), SetProjParm(), OGR_-
SRSNode::SetValue(), and StripCTParms().

Referenced by importFromESRI(), and SetFromUserInput().

13.70.3.65 OGRErr OGRSpatialReference::morphToESRI ()

Convert in place to ESRI WKT format. The value nodes of this coordinate system are modified in various
manners more closely map onto the ESRI concept of WKT format. This includes renaming a variety
of projections and arguments, and stripping out nodes note recognised by ESRI (like AUTHORITY and
AXIS).

This does the same as the C function OSRMorphToESRI() (p. ??).

Returns:

OGRERR_NONE unless something goes badly wrong.

References OGR_SRSNode::AddChild(), OGR_SRSNode::applyRemapper(), OGR_-
SRSNode::DestroyChild(), FindProjParm(), Fixup(), GetAngularUnits(), GetAttrNode(), GetAt-

13.70 OGRSpatialReference Class Reference 341

trValue(), GetAuthorityCode(), GetAuthorityName(), = OGR_SRSNode::GetChild(), = OGR_-
SRSNode::GetChildCount(), GetLinearUnits(), GetNormProjParm(), GetProjParm(), GetUTMZone(),
OGR_SRSNode::GetValue(), SetNode(), OGR_SRSNode::SetValue(), and StripCTParms().

13.70.3.66 int OGRSpatialReference::Reference ()
Increments the reference count by one. The reference count is used keep track of the number of OGRGe-
ometry (p. ??) objects referencing this SRS.

The method does the same thing as the C function OSRReference() (p. ??).

Returns:

the updated reference count.

Referenced by OGRGeometry::assignSpatialReference().

13.70.3.67 void OGRSpatialReference::Release ()

Decrements the reference count by one, and destroy if zero. The method does the same thing as the C
function OSRRelease() (p. ??).

References Dereference().

Referenced by OGRGeometry::assignSpatialReference().

13.70.3.68 OGRErr OGRSpatialReference::SetACEA (double dfStdP1, double dfStdP2, double
dfCenterLat, double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Albers Conic Equal Area
References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromOzi(), importFromPCI(), importFromProj4(), and import-
FromUSGS().

13.70.3.69 OGRErr OGRSpatialReference::SetAE (double dfCenterLat, double dfCenterLong,
double dfFalseEasting, double dfFalseNorthing)

Azimuthal Equidistant
References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), importFromPCI(), importFromProj4(), and importFromUSGS().

13.70.3.70 OGRErr OGRSpatialReference::SetAngularUnits (const char x pszUnitsName, double
dfInRadians)

Set the angular units for the geographic coordinate system. This method creates a UNIT subnode with the
specified values as a child of the GEOGCS node.

This method does the same as the C function OSRSetAngularUnits() (p. ??).

342 Class Documentation

Parameters:

pszUnitsName the units name to be used. Some preferred units names can be found in ogr_srs_api.h
(p- ??) such as SRS_UA_DEGREE.

dfInRadians the value to multiple by an angle in the indicated units to transform to radians. Some
standard conversion factors can be found in ogr_srs_api.h (p. ??).
Returns:

OGRERR_NONE on success.

References OGR_SRSNode::AddChild(), OGR_SRSNode::FindChild(), GetAttrNode(), OGR_-
SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OGR_SRSNode::SetValue().

Referenced by CloneGeogCS(), Fixup(), and importFromPCI().

13.70.3.71 OGRErr OGRSpatialReference::SetAuthority (const char * pszTargetKey, const char x
pszAuthority, int nCode)

Set the authority for a node. This method is the same as the C function OSRSetAuthority() (p. ??).

Parameters:

pszTargetKey the partial or complete path to the node to set an authority on. ie. "PROJCS", "GE-
OGCS" or "GEOGCS|UNIT".

pszAuthority authority name, such as "EPSG".

nCode code for value with this authority.

Returns:

OGRERR_NONE on success.

References OGR_SRSNode::AddChild(), OGR_SRSNode::DestroyChild(), OGR_-
SRSNode::FindChild(), and GetAttrNode().

Referenced by AutoldentifyEPSG(), importFromEPSGA(), importFromPanorama(), importFromPCI(),
importFromUSGS(), and importFromWMSAUTO().

13.70.3.72 OGRErr OGRSpatialReference::SetAxes (const char * pszTargetKey, const char x
pszXAxisName, OGRAXxisOrientation eXAxisOrientation, const char x pszYAxisName,
OGRAKXxisOrientation eYAxisOrientation)

Set the axes for a coordinate system. Set the names, and orientations of the axes for either a projected
(PROIJCS) or geographic (GEOGCS) coordinate system.

This method is equivalent to the C function OSRSetAxes().

Parameters:

pszlargetKey either "PROJCS" or "GEOGCS", must already exist in SRS.
pszXAxisName name of first axis, normally "Long" or "Easting".
eXAxisOrientation normally OAO_East.

pszYAxisName name of second axis, normally "Lat" or "Northing".

eYAxisOrientation normally OAO_North.

13.70 OGRSpatialReference Class Reference 343

Returns:

OGRERR_NONE on success or an error code.

References OGR_SRSNode::AddChild(), OGR_SRSNode::DestroyChild(), OGR_-
SRSNode::FindChild(), and OSRAxisEnumToName().

13.70.3.73 OGRErr OGRSpatialReference::SetBonne (double dfStdP1, double dfCentralMeridian,
double dfFalseEasting, double dfFalseNorthing)

Bonne

References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

13.70.3.74 OGRErr OGRSpatialReference::SetCEA (double dfStdP1, double dfCentralMeridian,
double dfFalseEasting, double dfFalseNorthing)

Cylindrical Equal Area

References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), and importFromProj4().

13.70.3.75 OGRErr OGRSpatialReference::SetCompoundCS (const char *x pszName, const
OGRSpatialReference * poHorizSRS, const OGRSpatialReference * poVertSRS)

Setup a compound coordinate system. This method is the same as the C function OSRSetCompoundCS()
(p-??).

This method is replace the current SRS with a COMPD_CS coordinate system consisting of the passed in
horizontal and vertical coordinate systems.

Parameters:

pszName the name of the compound coordinate system.
poHorizSRS the horizontal SRS (PROJCS or GEOGCS).
poVertSRS the vertical SRS (VERT_CS).

Returns:

OGRERR_NONE on success.

References OGR_SRSNode::AddChild(), Clear(), OGR_SRSNode::Clone(), IsGeographic(), IsPro-
jected(), and IsVertical().

13.70.3.76 OGRErr OGRSpatialReference::SetCS (double dfCenterLat, double dfCenterLong,
double dfFalseEasting, double dfFalseNorthing)

Cassini-Soldner

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), and importFromProj4().

344 Class Documentation

13.70.3.77 OGRErr OGRSpatialReference::SetEC (double dfStdP1, double dfStdP2, double
dfCenterLat, double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Equidistant Conic

References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromPanorama(), importFromPCI(), importFromProj4(), and
importFromUSGS().

13.70.3.78 OGRErr OGRSpatialReference::SetEckert (int nVariation, double dfCentralMeridian,
double dfFalseEasting, double dfFalseNorthing)

Eckert I-VI

References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

13.70.3.79 OGRErr OGRSpatialReference::SetEquirectangular (double dfCenterLat, double
dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Equirectangular

References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), importFromProj4(), and importFromWMSAUTO().

13.70.3.80 OGRErr OGRSpatialReference::SetEquirectangular2 (double dfCenterLat, double
dfCenterLong, double dfPseudoStdParallell, double dfFalseEasting, double
dfFalseNorthing)

Equirectangular generalized form :

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), importFromProj4(), and importFromUSGS().

13.70.3.81 OGRErr OGRSpatialReference::SetExtension (const char * pszTargetKey, const char =
pszName, const char x pszValue)

Set extension value. Set the value of the named EXTENSION item for the identified target node.

Parameters:
pszlargetKey the name or path to the parent node of the EXTENSION.
pszName the name of the extension being fetched.
pszValue the value to set
Returns:
OGRERR_NONE on success
References OGR_SRSNode::AddChild(), OGR_SRSNode::GetChild(), OGR_-
SRSNode::GetChildCount(), OGR_SRSNode::GetValue(), and OGR_SRSNode::SetValue().
Referenced by importFromProj4().

13.70 OGRSpatialReference Class Reference 345

13.70.3.82 OGRErr OGRSpatialReference::SetFromUserInput (const char x pszDefinition)

Set spatial reference from various text formats. This method will examine the provided input, and try to
deduce the format, and then use it to initialize the spatial reference system. It may take the following forms:

1. Well Known Text definition - passed on to importFromWkt() (p. ??).
. "EPSG:n" - number passed on to importFromEPSG() (p. 2?).
. "EPSGA:n" - number passed on to importFromEPSGA() (p. ??).
. "AUTO:proj_id,unit_id,lon0,lat0" - WMS auto projections.

2

3

4

5. "urn:ogc:def:crs:EPSG::n" - ogc urns

6. PROJ .4 definitions - passed on to importFromProj4() (p.??).
7. filename - file read for WKT, XML or PROJ .4 definition.

8

. well known name accepted by SetWellKnownGeogCS() (p. 2?), such as NAD27, NADS3, WGS84
or WGS72.

9. WKT (directly or in a file) in ESRI format should be prefixed with ESRI:: to trigger an automatic
morphFromESRI() (p. ??).

10. "IGNF:xxx" - "+init=IGNF:xxx" passed on to importFromProj4() (p. ??).

It is expected that this method will be extended in the future to support XML and perhaps a simplified
"minilanguage" for indicating common UTM and State Plane definitions.

This method is intended to be flexible, but by it’s nature it is imprecise as it must guess information about
the format intended. When possible applications should call the specific method appropriate if the input is
known to be in a particular format.

This method does the same thing as the OSRSetFromUserInput() (p. ??) function.

Parameters:

pszDefinition text definition to try to deduce SRS from.

Returns:

OGRERR_NONE on success, or an error code if the name isn’t recognised, the definition is corrupt,
or an EPSG value can’t be successfully looked up.

References OGR_SRSNode::AddChild(), Clear(), OGR_SRSNode::Clone(), OGR_SRSNode::GetChild(),
OGR_SRSNode::GetValue(), importFromDict(), importFromEPSG(), importFromEPSGA(), import-
FromProj4(), importFromUrl(), importFromURN(), importFromWkt(), importFromWMSAUTO(), im-
portFromXML(), morphFromESRI(), SetNode(), and SetWellKnownGeogCS().

Referenced by importFromUrl().

13.70.3.83 OGRErr OGRSpatialReference::SetGaussSchreiberTMercator (double dfCenterLat,
double dfCenterLong, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Gauss Schreiber Transverse Mercator

References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

346 Class Documentation

13.70.3.84 OGRErr OGRSpatialReference::SetGeocCS (const char x pszName)

Set the user visible GEOCCS name. This method is the same as the C function OSRSetGeocCS() (p. ??).

This method will ensure a GEOCCS node is created as the root, and set the provided name on it. If used on
a GEOGCS coordinate system, the DATUM and PRIMEM nodes from the GEOGCS will be tarnsferred
over to the GEOGCS.

Parameters:

pszName the user visible name to assign. Not used as a key.

Returns:

OGRERR_NONE on success.

Since:

OGR 1.9.0

References OGR_SRSNode::Clone(), GetAttrNode(), OGR_SRSNode::GetNode(), OGR_-
SRSNode::GetValue(), OGR_SRSNode::InsertChild(), and SetNode().

Referenced by importFromProj4().

13.70.3.85 OGRErr OGRSpatialReference::SetGeogCS (const char x pszGeogName, const char
x pszDatumName, const char * pszSpheroidName, double dfSemiMajor, double
dfInvFlattening, const char x pszPMName = NULL, double dfPMOffset =0.0, const
char x pszAngularUnits = NULL, double dfConvertToRadians = 0 . 0)

Set geographic coordinate system. This method is used to set the datum, ellipsoid, prime meridian and
angular units for a geographic coordinate system. It can be used on it’s own to establish a geographic spatial
reference, or applied to a projected coordinate system to establish the underlying geographic coordinate
system.

This method does the same as the C function OSRSetGeogCS() (p. 2?).

Parameters:

pszGeogName user visible name for the geographic coordinate system (not to serve as a key).

pszDatumName key name for this datum. The OpenGIS specification lists some known values, and
otherwise EPSG datum names with a standard transformation are considered legal keys.

pszSpheroidName user visible spheroid name (not to serve as a key)
dfSemiMajor the semi major axis of the spheroid.

dfInvFlattening the inverse flattening for the spheroid. This can be computed from the semi minor
axis as 1/f = 1.0/ (1.0 - semiminor/semimajor).

pszPMName the name of the prime merdidian (not to serve as a key) If this is NULL a default value
of "Greenwich" will be used.

dfPMOffset the longitude of greenwich relative to this prime meridian.

pszAngularUnits the angular units name (see ogr_srs_api.h (p.??) for some standard names). If
NULL a value of "degrees" will be assumed.

dfConvertToRadians value to multiply angular units by to transform them to radians. A value of
SRS_UL_DEGREE_CONYV will be used if pszAngularUnits is NULL.

13.70 OGRSpatialReference Class Reference 347

Returns:

OGRERR_NONE on success.

References OGR_SRSNode::AddChild(), Clear(), CopyGeogCSFrom(), CPLAtof(), OGR_-
SRSNode::DestroyChild(), OGR_SRSNode::FindChild(), GetAttrNode(), OGR_SRSNode::InsertChild(),
IsGeocentric(), SetGeogCS(), and SetRoot().

Referenced by importFromPanorama(), importFromPCI(), importFromProj4(), importFromUSGS(), and
SetGeogCS().

13.70.3.86 OGRErr OGRSpatialReference::SetGEOS (double dfCentralMeridian, double
dfSatelliteHeight, double dfFalseEasting, double dfFalseNorthing)

Geostationary Satellite
References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

13.70.3.87 OGRErr OGRSpatialReference::SetGH (double dfCentralMeridian, double
dfFalseEasting, double dfFalseNorthing)

Goode Homolosine
References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

13.70.3.88 OGRErr OGRSpatialReference::SetGnomonic (double dfCenterLat, double
dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Gnomonic
References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), importFromPCI(), importFromProj4(), and importFromUSGS().

13.70.3.89 OGRErr OGRSpatialReference::SetGS (double dfCentralMeridian, double
dfFalseEasting, double dfFalseNorthing)

Gall Stereograpic
References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

13.70.3.90 OGRErr OGRSpatialReference::SetHOM (double dfCenterLat, double dfCenterLong,
double dfAzimuth, double dfRectToSkew, double dfScale, double dfFalseEasting,
double dfFalseNorthing)

Set a Hotine Oblique Mercator projection using azimuth angle. Hotine Oblique Mercator

This method does the same thing as the C function OSRSetHOM() (p. ??).

348 Class Documentation

Parameters:
dfCenterLat Latitude of the projection origin.
dfCenterLong Longitude of the projection origin.
dfAzimuth Azimuth, measured clockwise from North, of the projection centerline.
dfRectToSkew 7.
dfScale Scale factor applies to the projection origin.
dfFalseEasting False easting.
dfFalseNorthing False northing.

Returns:

OGRERR_NONE on success.

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), importFromProj4(), and importFromUSGS().

13.70.3.91 OGRErr OGRSpatialReference::SetHOM2PNO (double dfCenterLat, double
dfLatl, double dfLongl, double dfLat2, double dfLong2, double dfScale, double
dfFalseEasting, double dfFalseNorthing)

Set a Hotine Oblique Mercator projection using two points on projection centerline. This method does the
same thing as the C function OSRSetHOM2PNO() (p. 2?).

Parameters:
dfCenterLat Latitude of the projection origin.
dfLatl Latitude of the first point on center line.
dfLongl Longitude of the first point on center line.
dfLat2 Latitude of the second point on center line.
dfLong2 Longitude of the second point on center line.
dfScale Scale factor applies to the projection origin.
dfFalseEasting False easting.
dfFalseNorthing False northing.

Returns:

OGRERR_NONE on success.

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), and importFromUSGS().

13.70.3.92 OGRErr OGRSpatialReference::SetIGH ()

Interrupted Goode Homolosine
References SetProjection().

Referenced by importFromProj4().

13.70 OGRSpatialReference Class Reference 349

13.70.3.93 OGRErr OGRSpatialReference::SetIWMPolyconic (double dfLatl, double dfLat2,
double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

International Map of the World Polyconic
References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), and importFromProj4().

13.70.3.94 OGRErr OGRSpatialReference::SetKrovak (double dfCenterLat, double
dfCenterLong, double dfAzimuth, double dfPseudoStdParallelLat, double dfScale,
double dfFalseEasting, double dfFalseNorthing)

Krovak Oblique Conic Conformal
References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

13.70.3.95 OGRErr OGRSpatialReference::SetLAEA (double dfCenterLat, double dfCenterLong,
double dfFalseEasting, double dfFalseNorthing)

Lambert Azimuthal Equal-Area
References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromPanorama(), importFromPCI(), importFromProj4(), and
importFromUSGS().

13.70.3.96 OGRErr OGRSpatialReference::SetLCC (double dfStdP1, double dfStdP2, double
dfCenterLat, double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Lambert Conformal Conic
References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromOzi(), importFromPanorama(), importFromPCI(), import-
FromProj4(), and importFromUSGS().

13.70.3.97 OGRErr OGRSpatialReference::SetLCC1SP (double dfCenterLat, double
dfCenterLong, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Lambert Conformal Conic 1SP

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), and importFromProj4().

13.70.3.98 OGRErr OGRSpatialReference::SetLCCB (double dfStdP1, double dfStdP2, double
dfCenterLat, double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Lambert Conformal Conic (Belgium)

References SetNormProjParm(), and SetProjection().

350 Class Documentation

13.70.3.99 OGRErr OGRSpatialReference::SetLinearUnits (const char x pszUnitsName, double
dfInMeters)

Set the linear units for the projection. This method creates a UNIT subnode with the specified values as a
child of the PROJCS, GEOCCS or LOCAL_CS node.
This method does the same as the C function OSRSetLinearUnits() (p. 2?).

Parameters:

pszUnitsName the units name to be used. Some preferred units names can be found in ogr_srs_api.h
(p- ??) such as SRS_UL_METER, SRS_UL_FOOT and SRS_UL_US_FOQT.

dfInMeters the value to multiple by a length in the indicated units to transform to meters. Some
standard conversion factors can be found in ogr_srs_api.h (p. ??).

Returns:

OGRERR_NONE on success.

References SetTargetLinearUnits().

Referenced by Fixup(), importFromERM(), importFromOzi(), importFromPanorama(), importFromPCI(),
importFromProj4(), importFromUSGS(), importFromWMSAUTO(), SetLinearUnitsAndUpdateParame-
ters(), SetStatePlane(), and SetUTMJ().

13.70.3.100 OGRErr OGRSpatialReference::SetLinearUnitsAndUpdateParameters (const char *
pszName, double dfInMeters)

Set the linear units for the projection. This method creates a UNIT subnode with the specified values as a
child of the PROJCS or LOCAL_CS node. It works the same as the SetLinearUnits() (p. ??) method, but
it also updates all existing linear projection parameter values from the old units to the new units.

Parameters:

pszName the units name to be used. Some preferred units names can be found in ogr_srs_api.h
(p- ??) such as SRS_UL_METER, SRS_UL_FOOT and SRS_UL_US_FOOT.

dfInMeters the value to multiple by a length in the indicated units to transform to meters. Some
standard conversion factors can be found in ogr_srs_api.h (p. 2?).
Returns:

OGRERR_NONE on success.

References GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), GetLin-
earUnits(), GetProjParm(), OGR_SRSNode::GetValue(), SetLinearUnits(), and SetProjParm().

Referenced by importFromESRI(), and importFromPCI().

13.70.3.101 OGRErr OGRSpatialReference::SetLocalCS (const char * pszName)

Set the user visible LOCAL_CS name. This method is the same as the C function OSRSetLocalCS()
(. ?).

This method will ensure a LOCAL_CS node is created as the root, and set the provided name on it. It must
be used before SetLinearUnits() (p. ??).

13.70 OGRSpatialReference Class Reference 351

Parameters:

pszName the user visible name to assign. Not used as a key.

Returns:

OGRERR_NONE on success.

References GetAttrNode(), and SetNode().

Referenced by importFromESRI(), importFromOzi(), importFromPanorama(), importFromPCI(), import-
FromUSGS(), and SetStatePlane().

13.70.3.102 OGRErr OGRSpatialReference::SetMC (double dfCenterLat, double dfCenterLong,
double dfFalseEasting, double dfFalseNorthing)

Miller Cylindrical

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), importFromProj4(), and importFromUSGS().

13.70.3.103 OGRErr OGRSpatialReference::SetMercator (double dfCenterLat, double
dfCenterLong, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Mercator

References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromOzi(), importFromPanorama(), importFromPCI(), import-
FromProj4(), and importFromUSGS().

13.70.3.104 OGRErr OGRSpatialReference::SetMollweide (double dfCentralMeridian, double
dfFalseEasting, double dfFalseNorthing)

Mollweide

References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), importFromProj4(), importFromUSGS(), and importFromWM-
SAUTO().

13.70.3.105 OGRErr OGRSpatialReference::SetNode (const char « pszNodePath, const char x
pszNewNodeValue)

Set attribute value in spatial reference. Missing intermediate nodes in the path will be created if not already
in existance. If the attribute has no children one will be created and assigned the value otherwise the zeroth
child will be assigned the value.

This method does the same as the C function OSRSetAttrValue() (p. 2?).

Parameters:

pszNodePath full path to attribute to be set. For instance "PROJCS|GEOGCS|UNIT".

pszNewNodeValue value to be assigned to node, such as "meter". This may be NULL if you just want
to force creation of the intermediate path.

352 Class Documentation

Returns:

OGRERR_NONE on success.
References OGR_SRSNode::AddChild(), OGR_SRSNode::GetChild(), OGR_-
SRSNode::GetChildCount(), OGR_SRSNode::GetValue(), SetRoot(), and OGR_SRSNode::SetValue().

Referenced by importFromProj4(), importFromURN(), morphFromESRI(), morphToESRI(), SetFro-
mUserInput(), SetGeocCS(), SetLocalCS(), SetProjCS(), SetProjection(), and SetUTM().

13.70.3.106 OGRErr OGRSpatialReference::SetNormProjParm (const char * pszName, double
dfValue)

Set a projection parameter with a normalized value. This method is the same as SetProjParm() (p.??)
except that the value of the parameter passed in is assumed to be in "normalized" form (decimal degrees
for angular values, meters for linear values. The values are converted in a form suitable for the GEOGCS
and linear units in effect.

This method is the same as the C function OSRSetNormProjParm() (p. ??).

Parameters:

pszName the parameter name, which should be selected from the macros in ogr_srs_api.h (p. ??),
such as SRS_PP_CENTRAL_MERIDIAN.

dfValue value to assign.
Returns:

OGRERR_NONE on success.

References SetProjParm().

Referenced by importFromProj4(), SetACEA(), SetAE(), SetBonne(), SetCEA(), SetCS(), SetEC(),
SetEckert(), SetEquirectangular(), SetEquirectangular2(), SetGaussSchreiberTMercator(), SetGEOS(),
SetGH(), SetGnomonic(), SetGS(), SetHOM(), SetHOM2PNO(), SetIWMPolyconic(), SetKrovak(), Set-
LAEA(), SetLCC(), SetLCCI1SP(), SetLCCB(), SetMC(), SetMercator(), SetMollweide(), SetNZMG(),
SetOrthographic(), SetOS(), SetPolyconic(), SetPS(), SetRobinson(), SetSinusoidal(), SetSOC(), Set-
StatePlane(), SetStereographic(), SetTM(), SetTMG(), SetTMSO(), SetTMVariant(), SetTPED(), Se-
tUTM(), SetVDG(), and SetWagner().

13.70.3.107 OGRErr OGRSpatialReference::SetNZMG (double dfCenterLat, double
dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

New Zealand Map Grid

References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

13.70.3.108 OGRErr OGRSpatialReference::SetOrthographic (double dfCenterLat, double
dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Orthographic

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), importFromProj4(), importFromUSGS(), and importFromWM-
SAUTO().

13.70 OGRSpatialReference Class Reference 353

13.70.3.109 OGRErr OGRSpatialReference::SetOS (double dfOriginLat, double dfCMeridian,
double dfScale, double dfFalseEasting, double dfFalseNorthing)

Oblique Stereographic

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), and importFromProj4().

13.70.3.110 OGRErr OGRSpatialReference::SetPolyconic (double dfCenterLat, double
dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Polyconic

References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromPanorama(), importFromPCI(), importFromProj4(), and
importFromUSGS().

13.70.3.111 OGRErr OGRSpatialReference::SetProjCS (const char * pszName)

Set the user visible PROJCS name. This method is the same as the C function OSRSetProjCS() (p. ??).

This method will ensure a PROJCS node is created as the root, and set the provided name on it. If used on
a GEOGCS coordinate system, the GEOGCS node will be demoted to be a child of the new PROJCS root.

Parameters:

pszName the user visible name to assign. Not used as a key.

Returns:

OGRERR_NONE on success.

References GetAttrNode(), OGR_SRSNode::GetValue(), OGR_SRSNode::InsertChild(), and SetNode().

13.70.3.112 OGRErr OGRSpatialReference::SetProjection (const char x pszProjection)

Set a projection name. This method is the same as the C function OSRSetProjection() (p. ??).

Parameters:

pszProjection the projection name, which should be selected from the macros in ogr_srs_api.h
(p-??), such as SRS_PT_TRANSVERSE_MERCATOR.

Returns:

OGRERR_NONE on success.

References GetAttrNode(), OGR_SRSNode::GetValue(), OGR_SRSNode::InsertChild(), and SetNode().

Referenced by SetACEA(), SetAE(), SetBonne(), SetCEA(), SetCS(), SetEC(), SetEckert(), SetE-
quirectangular(), SetEquirectangular2(), SetGaussSchreiberTMercator(), SetGEOS(), SetGH(), SetG-
nomonic